File: test_layers.py

package info (click to toggle)
python-anndata 0.12.6-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,876 kB
  • sloc: python: 21,429; makefile: 23
file content (132 lines) | stat: -rw-r--r-- 4,107 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from __future__ import annotations

import warnings
from importlib.util import find_spec

import numpy as np
import pandas as pd
import pytest
from numba.core.errors import NumbaDeprecationWarning

from anndata import AnnData, ImplicitModificationWarning, read_h5ad
from anndata.io import read_loom
from anndata.tests.helpers import gen_typed_df_t2_size

X_ = np.arange(12).reshape((3, 4))
L = np.arange(12).reshape((3, 4)) + 12


@pytest.fixture(params=[X_, None])
def X(request):
    return request.param


def test_creation(X: np.ndarray | None):
    adata = AnnData(X=X, layers=dict(L=L.copy()))

    assert list(adata.layers.keys()) == ["L"]
    assert "L" in adata.layers
    assert "X" not in adata.layers
    assert "some_other_thing" not in adata.layers
    assert (adata.layers["L"] == L).all()
    assert adata.shape == L.shape


def test_views():
    adata = AnnData(X=X_, layers=dict(L=L.copy()))
    adata_view = adata[1:, 1:]

    assert adata_view.layers.is_view
    assert adata_view.layers.parent_mapping == adata.layers

    assert adata_view.layers.keys() == adata.layers.keys()
    assert (adata_view.layers["L"] == adata.layers["L"][1:, 1:]).all()

    adata.layers["S"] = X_

    assert adata_view.layers.keys() == adata.layers.keys()
    assert (adata_view.layers["S"] == adata.layers["S"][1:, 1:]).all()

    with pytest.warns(ImplicitModificationWarning):
        adata_view.layers["T"] = X_[1:, 1:]

    assert not adata_view.layers.is_view
    assert not adata_view.is_view


@pytest.mark.parametrize(
    ("df", "homogenous", "dtype"),
    [
        (lambda: gen_typed_df_t2_size(*X_.shape), True, np.object_),
        (lambda: pd.DataFrame(X_**2), False, np.int_),
    ],
)
def test_set_dataframe(homogenous, df, dtype):
    adata = AnnData(X_)
    if homogenous:
        with pytest.warns(UserWarning, match=r"Layer 'df'.*dtype object"):
            adata.layers["df"] = df()
    else:
        with warnings.catch_warnings():
            warnings.simplefilter("error")
            adata.layers["df"] = df()
    assert isinstance(adata.layers["df"], np.ndarray)
    assert np.issubdtype(adata.layers["df"].dtype, dtype)


def test_readwrite(X: np.ndarray | None, backing_h5ad):
    adata = AnnData(X=X, layers=dict(L=L.copy()))
    adata.write(backing_h5ad)
    adata_read = read_h5ad(backing_h5ad)

    assert adata.layers.keys() == adata_read.layers.keys()
    assert (adata.layers["L"] == adata_read.layers["L"]).all()


@pytest.mark.skipif(find_spec("loompy") is None, reason="loompy not installed")
def test_readwrite_loom(tmp_path):
    loom_path = tmp_path / "test.loom"
    adata = AnnData(X=X_, layers=dict(L=L.copy()))

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=NumbaDeprecationWarning)
        # loompy uses “is” for ints
        warnings.filterwarnings("ignore", category=SyntaxWarning)
        warnings.filterwarnings(
            "ignore",
            message=r"datetime.datetime.utcnow\(\) is deprecated",
            category=DeprecationWarning,
        )
        adata.write_loom(loom_path)
    adata_read = read_loom(loom_path, X_name="")

    assert adata.layers.keys() == adata_read.layers.keys()
    assert (adata.layers["L"] == adata_read.layers["L"]).all()


def test_backed():
    # backed mode for layers isn’t implemented, layers stay in memory
    pass


def test_copy():
    adata = AnnData(X=X_, layers=dict(L=L.copy()))
    bdata = adata.copy()
    # check that we don’t create too many references
    assert bdata._layers is bdata.layers._data
    # check that we have a copy
    adata.layers["L"] += 10
    assert np.all(adata.layers["L"] != bdata.layers["L"])  # 201


def test_shape_error():
    adata = AnnData(X=X_)
    with pytest.raises(
        ValueError,
        match=(
            r"Value passed for key 'L' is of incorrect shape\. "
            r"Values of layers must match dimensions \('obs', 'var'\) of parent\. "
            r"Value had shape \(4, 4\) while it should have had \(3, 4\)\."
        ),
    ):
        adata.layers["L"] = np.zeros((X_.shape[0] + 1, X_.shape[1]))