1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
from __future__ import annotations
import string
import numpy as np
import pandas as pd
import pytest
from anndata._core.xarray import Dataset2D
from anndata.compat import XDataArray, XDataset, XVariable
from anndata.tests.helpers import gen_typed_df
pytest.importorskip("xarray")
@pytest.fixture
def df():
return gen_typed_df(10)
@pytest.fixture
def dataset2d(df):
return Dataset2D(XDataset.from_dataframe(df))
def test_shape(df, dataset2d):
assert dataset2d.shape == df.shape
def test_columns(df, dataset2d):
assert np.all(dataset2d.columns.sort_values() == df.columns.sort_values())
def test_to_memory(df, dataset2d):
memory_df = dataset2d.to_memory()
assert np.all(df == memory_df)
assert np.all(df.index == memory_df.index)
assert np.all(df.columns.sort_values() == memory_df.columns.sort_values())
def test_getitem(df, dataset2d):
col = df.columns[0]
assert np.all(dataset2d[col] == df[col])
empty_dset = dataset2d[[]]
assert empty_dset.shape == (df.shape[0], 0)
assert np.all(empty_dset.index == dataset2d.index)
def test_backed_property(dataset2d):
assert not dataset2d.is_backed
dataset2d.is_backed = True
assert dataset2d.is_backed
dataset2d.is_backed = False
assert not dataset2d.is_backed
def test_index_dim(dataset2d):
assert dataset2d.index_dim == "index"
assert dataset2d.true_index_dim == dataset2d.index_dim
col = next(iter(dataset2d.keys()))
dataset2d.true_index_dim = col
assert dataset2d.index_dim == "index"
assert dataset2d.true_index_dim == col
with pytest.raises(ValueError, match=r"Unknown variable `test`\."):
dataset2d.true_index_dim = "test"
dataset2d.true_index_dim = None
assert dataset2d.true_index_dim == dataset2d.index_dim
def test_index(dataset2d):
alphabet = np.asarray(
list(string.ascii_letters + string.digits + string.punctuation)
)
new_idx = pd.Index(
[
"".join(np.random.choice(alphabet, size=10))
for _ in range(dataset2d.shape[0])
],
name="test_index",
)
col = next(iter(dataset2d.keys()))
dataset2d.true_index_dim = col
dataset2d.index = new_idx
assert np.all(dataset2d.index == new_idx)
assert dataset2d.true_index_dim == dataset2d.index_dim == new_idx.name
assert list(dataset2d.ds.coords.keys()) == [new_idx.name]
@pytest.fixture
def dataset_2d_one_column():
return Dataset2D(
XDataset(
{"foo": ("obs_names", pd.array(["a", "b", "c"], dtype="category"))},
coords={"obs_names": [1, 2, 3]},
)
)
def test_dataset_2d_set_dataarray(dataset_2d_one_column):
da = XDataArray(
np.arange(3), coords={"obs_names": [1, 2, 3]}, dims=("obs_names"), name="bar"
)
dataset_2d_one_column["bar"] = da
assert dataset_2d_one_column["bar"].dims == ("obs_names",)
assert dataset_2d_one_column["bar"].equals(da)
def test_dataset_2d_set_dataset(dataset_2d_one_column):
ds = XDataset(
data_vars={
"foo": ("obs_names", np.arange(3)),
"bar": ("obs_names", np.arange(3) + 3),
},
coords={"obs_names": [1, 2, 3]},
)
key = ["foo", "bar"]
dataset_2d_one_column[key] = ds
assert tuple(dataset_2d_one_column[key].ds.sizes.keys()) == ("obs_names",)
assert dataset_2d_one_column[key].equals(ds)
@pytest.mark.parametrize(
"setter",
[
pd.array(["e", "f", "g"], dtype="category"),
("obs_names", pd.array(["e", "f", "g"], dtype="category")),
],
ids=["array", "tuple_with_array"],
)
def test_dataset_2d_set_extension_array(dataset_2d_one_column, setter):
dataset_2d_one_column["bar"] = setter
assert dataset_2d_one_column["bar"].dims == ("obs_names",)
assert (
dataset_2d_one_column["bar"].data is setter[1]
if isinstance(setter, tuple)
else setter
)
@pytest.mark.parametrize(
("da", "pattern"),
[
pytest.param(
XDataset(
data_vars={"bar": ("obs_names", np.arange(3))},
coords={"foo": ("obs_names", np.arange(3))},
),
r"Dataset should have coordinate obs_names",
id="coord_name_dataset",
),
pytest.param(
XDataArray(
np.arange(3),
coords={"foo": ("obs_names", np.arange(3))},
dims="obs_names",
name="bar",
),
r"DataArray should have coordinate obs_names",
id="coord_name",
),
pytest.param(
XDataArray(
np.arange(3),
coords={"obs_names": np.arange(3)},
dims=("obs_names",),
name="not_bar",
),
r"DataArray should have name bar, found not_bar",
id="dataarray_name",
),
pytest.param(
XDataset(
data_vars={
"foo": (["obs_names", "not_obs_names"], np.arange(9).reshape(3, 3))
},
coords={"obs_names": np.arange(3), "not_obs_names": np.arange(3)},
),
r"Dataset should have only one dimension",
id="multiple_dims_dataset",
),
pytest.param(
XDataArray(
np.arange(9).reshape(3, 3),
coords={"obs_names": np.arange(3), "not_obs_names": np.arange(3)},
dims=("obs_names", "not_obs_names"),
),
r"DataArray should have only one dimension",
id="multiple_dims_dataarray",
),
pytest.param(
XVariable(
data=np.arange(9).reshape(3, 3),
dims=("obs_names", "not_obs_names"),
),
r"Variable should have only one dimension",
id="multiple_dims_variable",
),
pytest.param(
XDataset(
data_vars={"foo": ("other", np.arange(3))},
coords={"obs_names": ("other", np.arange(3))},
),
r"Dataset should have dimension obs_names",
id="name_conflict_dataset",
),
pytest.param(
XVariable(
data=np.arange(3),
dims="not_obs_names",
),
r"Variable should have dimension obs_names, found not_obs_names",
id="name_conflict_variable",
),
pytest.param(
XDataArray(
np.arange(3),
coords=[np.arange(3)],
dims="not_obs_names",
),
r"DataArray should have dimension obs_names, found not_obs_names",
id="name_conflict_dataarray",
),
pytest.param(
("not_obs_names", [1, 2, 3]),
r"Setting value tuple should have first entry",
id="tuple_bad_dim",
),
pytest.param(
(("not_obs_names",), [1, 2, 3]),
r"Dimension tuple should have only",
id="nested_tuple_bad_dim",
),
pytest.param(
(("obs_names", "bar"), [1, 2, 3]),
r"Dimension tuple is too long",
id="nested_tuple_too_long",
),
],
)
def test_dataset_2d_set_with_bad_obj(da, pattern, dataset_2d_one_column):
with pytest.raises(ValueError, match=pattern):
dataset_2d_one_column["bar"] = da
@pytest.mark.parametrize(
"data", [np.arange(3), XDataArray(np.arange(3), dims="obs_names", name="obs_names")]
)
def test_dataset_2d_set_index(data, dataset_2d_one_column):
with pytest.raises(
KeyError,
match="Cannot set obs_names as a variable",
):
dataset_2d_one_column["obs_names"] = data
@pytest.mark.parametrize(
("ds", "pattern", "error"),
[
pytest.param(
XDataset(
{"foo": ("obs_names", pd.array(["a", "b", "c"], dtype="category"))},
coords={"obs_names": ("not_obs_names", [1, 2, 3])},
),
r"Dataset should have exactly one dimension",
ValueError,
id="more_than_one_dimension",
),
pytest.param(
XDataset(
{"foo": ("obs_names", pd.array(["a", "b", "c"], dtype="category"))},
coords={
"obs_names": ("obs_names", [1, 2, 3]),
"not_obs_names": ("obs_names", [1, 2, 3]),
},
),
r"Dataset should have exactly one coordinate",
ValueError,
id="more_than_one_coord",
),
pytest.param(
XDataset(
{"foo": ("not_obs_names", pd.array(["a", "b", "c"], dtype="category"))},
coords={
"obs_names": ("not_obs_names", [1, 2, 3]),
},
),
r"does not match coordinate",
ValueError,
id="coord_dim_mismatch",
),
pytest.param(
XDataset(
{"foo": (("obs", "obs1"), np.arange(9).reshape(3, 3))},
coords={
"obs_names": (("obs", "obs1"), np.arange(9).reshape(3, 3)),
},
),
r"Dataset should have exactly one",
ValueError,
id="multi_dim_coord",
),
pytest.param(
dict(foo="bar"),
r"Expected an xarray Dataset",
TypeError,
id="non_ds_init",
),
],
)
def test_init_errors(ds, pattern, error):
with pytest.raises(error, match=pattern):
Dataset2D(ds)
|