File: sparse_dataset.py

package info (click to toggle)
python-anndata 0.12.7-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,616 kB
  • sloc: python: 21,685; makefile: 23
file content (752 lines) | stat: -rw-r--r-- 27,280 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
"""\
This module implements on disk sparse datasets.

This code is based on and uses the conventions of h5sparse_ by `Appier Inc.`_.
See the copyright and license note in this directory source code.

.. _h5sparse: https://github.com/appier/h5sparse
.. _Appier Inc.: https://www.appier.com/
"""

# TODO:
# - think about supporting the COO format
from __future__ import annotations

import warnings
from abc import ABC
from collections.abc import Iterable
from functools import cached_property
from importlib.metadata import version
from itertools import accumulate, chain, pairwise
from math import floor
from pathlib import Path
from typing import TYPE_CHECKING, NamedTuple

import h5py
import numpy as np
import scipy.sparse as ss
from packaging.version import Version
from scipy.sparse import _sparsetools

from .. import abc
from .._settings import settings
from ..compat import (
    CSArray,
    CSMatrix,
    H5Group,
    ZarrArray,
    ZarrGroup,
    _read_attr,
    is_zarr_v2,
)
from .index import _fix_slice_bounds, _subset, unpack_index

if TYPE_CHECKING:
    from collections.abc import Sequence
    from typing import Literal

    from scipy.sparse._compressed import _cs_matrix

    from .._types import GroupStorageType
    from ..compat import H5Array, Index, Index1D, Index1DNorm
else:
    from scipy.sparse import spmatrix as _cs_matrix


SCIPY_1_15 = Version(version("scipy")) >= Version("1.15rc0")


class BackedFormat(NamedTuple):
    format: Literal["csr", "csc"]
    backed_type: type[BackedSparseMatrix]
    memory_type: type[_cs_matrix]


class BackedSparseMatrix(_cs_matrix):
    """\
    Mixin class for backed sparse matrices.

    Largely needed for the case `backed_sparse_csr(...)[:]`,
    since that calls copy on `.data`, `.indices`, and `.indptr`.
    """

    data: GroupStorageType
    indices: GroupStorageType
    indptr: np.ndarray

    def copy(self) -> CSMatrix:
        if isinstance(self.data, h5py.Dataset):
            return sparse_dataset(self.data.parent).to_memory()
        if isinstance(self.data, ZarrArray):
            import zarr

            if is_zarr_v2():
                sparse_group = zarr.open(
                    store=self.data.store,
                    mode="r",
                    chunk_store=self.data.chunk_store,  # chunk_store is needed, not clear why
                )[Path(self.data.path).parent]
            else:
                anndata_group = zarr.open_group(store=self.data.store, mode="r")
                sparse_group = anndata_group[
                    str(
                        Path(str(self.data.store_path))
                        .relative_to(str(anndata_group.store_path))
                        .parent
                    )
                ]
            return sparse_dataset(sparse_group).to_memory()
        return super().copy()

    def _set_many(self, i: Iterable[int], j: Iterable[int], x):
        """\
        Sets value at each (i, j) to x

        Here (i,j) index major and minor respectively,
        and must not contain duplicate entries.
        """
        # Scipy 1.3+ compat
        n_samples = 1 if np.isscalar(x) else len(x)
        offsets = self._offsets(i, j, n_samples)

        if -1 not in offsets:
            # make a list for interaction with h5py
            offsets = list(offsets)
            # only affects existing non-zero cells
            self.data[offsets] = x
            return

        else:
            msg = "You cannot change the sparsity structure of a SparseDataset."
            raise ValueError(msg)
            # replace where possible
            # mask = offsets > -1
            # # offsets[mask]
            # bool_data_mask = np.zeros(len(self.data), dtype=bool)
            # bool_data_mask[offsets[mask]] = True
            # self.data[bool_data_mask] = x[mask]
            # # self.data[offsets[mask]] = x[mask]
            # # only insertions remain
            # mask = ~mask
            # i = i[mask]
            # i[i < 0] += M
            # j = j[mask]
            # j[j < 0] += N
            # self._insert_many(i, j, x[mask])

    def _zero_many(self, i: Sequence[int], j: Sequence[int]):
        """\
        Sets value at each (i, j) to zero, preserving sparsity structure.

        Here (i,j) index major and minor respectively.
        """
        offsets = self._offsets(i, j, len(i))

        # only assign zeros to the existing sparsity structure
        self.data[list(offsets[offsets > -1])] = 0

    def _offsets(
        self, i: Iterable[int], j: Iterable[int], n_samples: int
    ) -> np.ndarray:
        i, j, M, N = self._prepare_indices(i, j)
        offsets = np.empty(n_samples, dtype=self.indices.dtype)
        ret = _sparsetools.csr_sample_offsets(
            M, N, self.indptr, self.indices, n_samples, i, j, offsets
        )
        if ret == 1:
            # rinse and repeat
            self.sum_duplicates()
            _sparsetools.csr_sample_offsets(
                M, N, self.indptr, self.indices, n_samples, i, j, offsets
            )
        return offsets

    def _get_contiguous_compressed_slice(
        self, s: slice
    ) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
        new_indptr = self.indptr[s.start : s.stop + 1]
        # If indptr is cached, we need to make a copy of the subset
        # so as not to alter the underlying cached data.
        if isinstance(self.indptr, np.ndarray):
            new_indptr = new_indptr.copy()

        start = new_indptr[0]
        stop = new_indptr[-1]

        new_indptr -= start

        new_data = self.data[start:stop]
        new_indices = self.indices[start:stop]

        return new_data, new_indices, new_indptr


class backed_csr_matrix(BackedSparseMatrix, ss.csr_matrix):
    def _get_intXslice(self, row: int, col: slice) -> ss.csr_matrix:
        return ss.csr_matrix(
            get_compressed_vector(self, row), shape=(1, self.shape[1])
        )[:, col]

    def _get_sliceXslice(self, row: slice, col: slice) -> ss.csr_matrix:
        row = _fix_slice_bounds(row, self.shape[0])
        col = _fix_slice_bounds(col, self.shape[1])

        out_shape = (
            slice_len(row, self.shape[0]),
            slice_len(col, self.shape[1]),
        )
        if out_shape[0] == 1:
            return self._get_intXslice(slice_as_int(row, self.shape[0]), col)
        if row.step != 1:
            return self._get_arrayXslice(np.arange(*row.indices(self.shape[0])), col)
        res = ss.csr_matrix(
            self._get_contiguous_compressed_slice(row),
            shape=(out_shape[0], self.shape[1]),
        )
        return res if out_shape[1] == self.shape[1] else res[:, col]

    def _get_arrayXslice(self, row: Sequence[int], col: slice) -> ss.csr_matrix:
        idxs = np.asarray(row)
        if len(idxs) == 0:
            return ss.csr_matrix((0, self.shape[1]))
        if idxs.dtype == bool:
            idxs = np.where(idxs)
        return ss.csr_matrix(
            get_compressed_vectors(self, idxs), shape=(len(idxs), self.shape[1])
        )[:, col]


class backed_csc_matrix(BackedSparseMatrix, ss.csc_matrix):
    def _get_sliceXint(self, row: slice, col: int) -> ss.csc_matrix:
        return ss.csc_matrix(
            get_compressed_vector(self, col), shape=(self.shape[0], 1)
        )[row, :]

    def _get_sliceXslice(self, row: slice, col: slice) -> ss.csc_matrix:
        row = _fix_slice_bounds(row, self.shape[0])
        col = _fix_slice_bounds(col, self.shape[1])

        out_shape = (
            slice_len(row, self.shape[0]),
            slice_len(col, self.shape[1]),
        )
        if out_shape[1] == 1:
            return self._get_sliceXint(row, slice_as_int(col, self.shape[1]))
        if col.step != 1:
            return self._get_sliceXarray(row, np.arange(*col.indices(self.shape[1])))
        res = ss.csc_matrix(
            self._get_contiguous_compressed_slice(col),
            shape=(self.shape[0], out_shape[1]),
        )
        return res if out_shape[0] == self.shape[0] else res[row, :]

    def _get_sliceXarray(self, row: slice, col: Sequence[int]) -> ss.csc_matrix:
        idxs = np.asarray(col)
        if len(idxs) == 0:
            return ss.csc_matrix((self.shape[0], 0))
        if idxs.dtype == bool:
            idxs = np.where(idxs)
        return ss.csc_matrix(
            get_compressed_vectors(self, idxs), shape=(self.shape[0], len(idxs))
        )[row, :]


FORMATS = [
    BackedFormat("csr", backed_csr_matrix, ss.csr_matrix),
    BackedFormat("csc", backed_csc_matrix, ss.csc_matrix),
    BackedFormat("csr", backed_csr_matrix, ss.csr_array),
    BackedFormat("csc", backed_csc_matrix, ss.csc_array),
]


def slice_len(s: slice, l: int) -> int:
    """Returns length of `a[s]` where `len(a) == l`."""
    return len(range(*s.indices(l)))


def slice_as_int(s: slice, l: int) -> int:
    """Converts slices of length 1 to the integer index they’ll access."""
    out = list(range(*s.indices(l)))
    assert len(out) == 1
    return out[0]


def get_compressed_vectors(
    x: BackedSparseMatrix, row_idxs: Iterable[int]
) -> tuple[Sequence, Sequence, Sequence]:
    indptr_slices = [slice(*(x.indptr[i : i + 2])) for i in row_idxs]
    # HDF5 cannot handle out-of-order integer indexing
    if isinstance(x.data, ZarrArray):
        as_np_indptr = np.concatenate([
            np.arange(s.start, s.stop) for s in indptr_slices
        ])
        data = x.data[as_np_indptr]
        indices = x.indices[as_np_indptr]
    else:
        data = np.concatenate([x.data[s] for s in indptr_slices])
        indices = np.concatenate([x.indices[s] for s in indptr_slices])
    indptr = list(accumulate(chain((0,), (s.stop - s.start for s in indptr_slices))))
    return data, indices, indptr


def get_compressed_vectors_for_slices(
    x: BackedSparseMatrix, slices: Iterable[slice]
) -> tuple[Sequence, Sequence, Sequence]:
    indptr_indices = [x.indptr[slice(s.start, s.stop + 1)] for s in slices]
    indptr_limits = [slice(i[0], i[-1]) for i in indptr_indices]
    # HDF5 cannot handle out-of-order integer indexing
    if isinstance(x.data, ZarrArray):
        indptr_int = np.concatenate([np.arange(s.start, s.stop) for s in indptr_limits])
        data = x.data[indptr_int]
        indices = x.indices[indptr_int]
    else:
        data = np.concatenate([x.data[s] for s in indptr_limits])
        indices = np.concatenate([x.indices[s] for s in indptr_limits])
    # Need to track the size of the gaps in the slices to each indptr subselection
    gaps = (s1.start - s0.stop for s0, s1 in pairwise(indptr_limits))
    offsets = accumulate(chain([indptr_limits[0].start], gaps))
    start_indptr = indptr_indices[0] - next(offsets)
    if len(slices) < 2:  # there is only one slice so no need to concatenate
        return data, indices, start_indptr
    end_indptr = np.concatenate([
        s[1:] - o for s, o in zip(indptr_indices[1:], offsets, strict=True)
    ])
    indptr = np.concatenate([start_indptr, end_indptr])
    return data, indices, indptr


def get_compressed_vector(
    x: BackedSparseMatrix, idx: int
) -> tuple[Sequence, Sequence, Sequence]:
    s = slice(*(x.indptr[idx : idx + 2]))
    data = x.data[s]
    indices = x.indices[s]
    indptr = [0, len(data)]
    return data, indices, indptr


def subset_by_major_axis_mask(
    mtx: _cs_matrix, mask: np.ndarray
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
    slices = np.ma.extras._ezclump(mask)

    def mean_slice_length(slices):
        return floor(sum(s.stop - s.start for s in slices) / len(slices))

    # heuristic for whether slicing should be optimized
    if len(slices) > 0:
        if mean_slice_length(slices) <= 7:
            return get_compressed_vectors(mtx, np.where(mask)[0])
        else:
            return get_compressed_vectors_for_slices(mtx, slices)
    return [], [], [0]


def get_memory_class(
    format: Literal["csr", "csc"], *, use_sparray_in_io: bool = False
) -> type[_cs_matrix]:
    for fmt, _, memory_class in FORMATS:
        if format == fmt and (
            (use_sparray_in_io and issubclass(memory_class, CSArray))
            or (not use_sparray_in_io and issubclass(memory_class, CSMatrix))
        ):
            return memory_class
    msg = f"Format string {format} is not supported."
    raise ValueError(msg)


def get_backed_class(
    format: Literal["csr", "csc"], *, use_sparray_in_io: bool = False
) -> type[BackedSparseMatrix]:
    for fmt, backed_class, _ in FORMATS:
        if format == fmt and (
            (use_sparray_in_io and issubclass(backed_class, CSArray))
            or (not use_sparray_in_io and issubclass(backed_class, CSMatrix))
        ):
            return backed_class
    msg = f"Format string {format} is not supported."
    raise ValueError(msg)


def _get_group_format(group: GroupStorageType) -> str:
    if "h5sparse_format" in group.attrs:
        # TODO: Warn about an old format
        # If this is only just going to be public, I could insist it's not like this
        return _read_attr(group.attrs, "h5sparse_format")
    else:
        # Should this be an extra field?
        return _read_attr(group.attrs, "encoding-type").replace("_matrix", "")


# Check for the overridden few methods above in our BackedSparseMatrix subclasses
def is_sparse_indexing_overridden(
    format: Literal["csr", "csc"], row: Index1D, col: Index1D
):
    major_indexer, minor_indexer = (row, col) if format == "csr" else (col, row)
    return isinstance(minor_indexer, slice) and (
        isinstance(major_indexer, int | np.integer | slice)
        or (isinstance(major_indexer, np.ndarray) and major_indexer.ndim == 1)
    )


def validate_indices(
    mtx: BackedSparseMatrix, indices: tuple[Index1D, Index1D]
) -> tuple[Index1D, Index1D]:
    if hasattr(mtx, "_validate_indices"):
        res = mtx._validate_indices(indices)
        return res[0] if SCIPY_1_15 else res
    # https://github.com/scipy/scipy/pull/23267
    elif Version(version("scipy")) >= Version("1.17.0rc0"):
        from scipy.sparse._index import _validate_indices  # type: ignore

        return _validate_indices(indices, mtx.shape, mtx.format)[0]
    else:  # pragma: no cover
        msg = "Cannot validate indices"
        raise RuntimeError(msg)


class BaseCompressedSparseDataset(abc._AbstractCSDataset, ABC):
    _group: GroupStorageType
    _should_cache_indptr: bool

    def __init__(self, group: GroupStorageType, *, should_cache_indptr: bool = True):
        type(self)._check_group_format(group)
        self._group = group
        self._should_cache_indptr = should_cache_indptr

    @property
    def group(self) -> GroupStorageType:
        """The group underlying the backed matrix."""
        return self._group

    @group.setter
    def group(self, val):
        msg = f"Do not reset group on a {type(self)} with {val}.  Instead use `sparse_dataset` to make a new class."
        raise AttributeError(msg)

    @property
    def backend(self) -> Literal["zarr", "hdf5"]:
        """Which file type is used on-disk."""
        if isinstance(self.group, ZarrGroup):
            return "zarr"
        elif isinstance(self.group, H5Group):
            return "hdf5"
        else:
            msg = f"Unknown group type {type(self.group)}"
            raise ValueError(msg)

    @property
    def dtype(self) -> np.dtype:
        """The :class:`numpy.dtype` of the `data` attribute of the sparse matrix."""
        return self._data.dtype

    @classmethod
    def _check_group_format(cls, group):
        group_format = _get_group_format(group)
        assert group_format == cls.format

    @property
    def _name(self) -> str:
        """Name of the group."""
        return self.group.name

    @property
    def shape(self) -> tuple[int, int]:
        """Shape of the matrix read off disk."""
        shape = _read_attr(self.group.attrs, "shape", None)
        if shape is None:
            # TODO warn
            shape = self.group.attrs.get("h5sparse_shape")
        return tuple(map(int, shape))

    def __repr__(self) -> str:
        name = type(self).__name__.removeprefix("_")
        return f"{name}: backend {self.backend}, shape {self.shape}, data_dtype {self.dtype}"

    def __getitem__(self, index: Index | tuple[()]) -> float | CSMatrix | CSArray:
        indices = self._normalize_index(index)
        row, col = indices
        mtx = self._to_backed()
        row_sp_matrix_validated, col_sp_matrix_validated = validate_indices(
            mtx, indices
        )

        # Handle masked indexing along major axis
        if self.format == "csr" and np.array(row).dtype == bool:
            sub = ss.csr_matrix(
                subset_by_major_axis_mask(mtx, row), shape=(row.sum(), mtx.shape[1])
            )[:, col]
        elif self.format == "csc" and np.array(col).dtype == bool:
            sub = ss.csc_matrix(
                subset_by_major_axis_mask(mtx, col), shape=(mtx.shape[0], col.sum())
            )[row, :]
        # read into memory data if we do not override access methods
        elif not is_sparse_indexing_overridden(
            self.format, row_sp_matrix_validated, col_sp_matrix_validated
        ):
            sub = self.to_memory()[row_sp_matrix_validated, col_sp_matrix_validated]
        else:
            sub = mtx[row, col]

        # If indexing is array x array it returns a backed_sparse_matrix
        # Not sure what the performance is on that operation
        # Also need to check if memory format is not matrix
        mtx_fmt = get_memory_class(
            self.format, use_sparray_in_io=settings.use_sparse_array_on_read
        )
        must_convert_to_array = issubclass(mtx_fmt, CSArray) and not isinstance(
            sub, CSArray
        )
        if isinstance(sub, BackedSparseMatrix) or must_convert_to_array:
            return mtx_fmt(sub)
        else:
            return sub

    def _normalize_index(
        self, index: Index | tuple[()]
    ) -> tuple[np.ndarray, np.ndarray]:
        if isinstance(index, tuple) and not len(index):
            index = slice(None)
        row, col = unpack_index(index)
        if all(isinstance(x, Iterable) for x in (row, col)):
            row, col = np.ix_(row, col)
        return row, col

    def __setitem__(self, index: Index | tuple[()], value) -> None:
        msg = (
            "__setitem__ for backed sparse will be removed in the next anndata release."
        )
        warnings.warn(msg, FutureWarning, stacklevel=2)
        row, col = self._normalize_index(index)
        mock_matrix = self._to_backed()
        mock_matrix[row, col] = value

    # TODO: split to other classes?
    def append(self, sparse_matrix: CSMatrix | CSArray) -> None:  # noqa: PLR0912, PLR0915
        """Append an in-memory or on-disk sparse matrix to the current object's store.

        Parameters
        ----------
        sparse_matrix
            The matrix to append.

        Raises
        ------
        NotImplementedError
            If the matrix to append is not one of :class:`~scipy.sparse.csr_array`, :class:`~scipy.sparse.csc_array`, :class:`~scipy.sparse.csr_matrix`, or :class:`~scipy.sparse.csc_matrix`.
        ValueError
            If both the on-disk and to-append matrices are not of the same format i.e., `csr` or `csc`.
        OverflowError
            If the underlying data store has a 32 bit indptr, and the new matrix is too large to fit in it i.e., would cause a 64 bit `indptr` to be written.
        AssertionError
            If the on-disk data does not have `csc` or `csr` format.
        """
        # Prep variables
        shape = self.shape
        if isinstance(sparse_matrix, BaseCompressedSparseDataset):
            sparse_matrix = sparse_matrix._to_backed()

        # Check input
        if not ss.issparse(sparse_matrix):
            msg = (
                "Currently, only sparse matrices of equivalent format can be "
                "appended to a SparseDataset."
            )
            raise NotImplementedError(msg)
        if self.format not in {"csr", "csc"}:
            msg = f"The append method for format {self.format} is not implemented."
            raise NotImplementedError(msg)
        if self.format != sparse_matrix.format:
            msg = (
                f"Matrices must have same format. Currently are "
                f"{self.format!r} and {sparse_matrix.format!r}"
            )
            raise ValueError(msg)
        [indptr_offset] = self.group["indices"].shape
        if self.group["indptr"].dtype == np.int32:
            new_nnz = indptr_offset + sparse_matrix.indices.shape[0]
            if new_nnz >= np.iinfo(np.int32).max:
                msg = (
                    "This array was written with a 32 bit intptr, but is now large "
                    "enough to require 64 bit values. Please recreate the array with "
                    "a 64 bit indptr."
                )
                raise OverflowError(msg)

        # shape
        if self.format == "csr":
            assert shape[1] == sparse_matrix.shape[1], (
                "CSR matrices must have same size of dimension 1 to be appended."
            )
            new_shape = (shape[0] + sparse_matrix.shape[0], shape[1])
        elif self.format == "csc":
            assert shape[0] == sparse_matrix.shape[0], (
                "CSC matrices must have same size of dimension 0 to be appended."
            )
            new_shape = (shape[0], shape[1] + sparse_matrix.shape[1])
        else:
            msg = "We forgot to update this branching to a new format"
            raise AssertionError(msg)
        if "h5sparse_shape" in self.group.attrs:
            del self.group.attrs["h5sparse_shape"]
        self.group.attrs["shape"] = new_shape

        # data
        data = self.group["data"]
        orig_data_size = data.shape[0]
        data.resize((orig_data_size + sparse_matrix.data.shape[0],))
        # see https://github.com/zarr-developers/zarr-python/discussions/2712 for why we need to read first
        append_data = sparse_matrix.data
        append_indices = sparse_matrix.indices
        if isinstance(sparse_matrix.data, ZarrArray) and not is_zarr_v2():
            data[orig_data_size:] = append_data[...]
        else:
            data[orig_data_size:] = append_data
        # indptr
        indptr = self.group["indptr"]
        orig_data_size = indptr.shape[0]
        indptr.resize((orig_data_size + sparse_matrix.indptr.shape[0] - 1,))
        indptr[orig_data_size:] = (
            sparse_matrix.indptr[1:].astype(np.int64) + indptr_offset
        )

        # indices
        if isinstance(sparse_matrix.data, ZarrArray) and not is_zarr_v2():
            append_indices = append_indices[...]
        indices = self.group["indices"]
        orig_data_size = indices.shape[0]
        indices.resize((orig_data_size + sparse_matrix.indices.shape[0],))
        indices[orig_data_size:] = append_indices

        # Clear cached property
        for attr in ["_indptr", "_indices", "_data"]:
            if hasattr(self, attr):
                delattr(self, attr)

    @cached_property
    def _indptr(self) -> np.ndarray:
        """\
        Other than `data` and `indices`, this is only as long as the major axis

        It should therefore fit into memory, so we cache it for faster access.
        """
        if self._should_cache_indptr:
            return self.group["indptr"][...]
        return self.group["indptr"]

    @cached_property
    def _indices(self) -> H5Array | ZarrArray:
        """\
        Cache access to the indices to prevent unnecessary reads of the zarray
        """
        return self.group["indices"]

    @cached_property
    def _data(self) -> H5Array | ZarrArray:
        """\
        Cache access to the data to prevent unnecessary reads of the zarray
        """
        return self.group["data"]

    def _to_backed(self) -> BackedSparseMatrix:
        format_class = get_backed_class(self.format)
        mtx = format_class(self.shape, dtype=self.dtype)
        mtx.data = self._data
        mtx.indices = self._indices
        mtx.indptr = self._indptr
        return mtx

    def to_memory(self) -> CSMatrix | CSArray:
        format_class = get_memory_class(
            self.format, use_sparray_in_io=settings.use_sparse_array_on_read
        )
        mtx = format_class(self.shape, dtype=self.dtype)
        mtx.data = self._data[...]
        mtx.indices = self._indices[...]
        mtx.indptr = self._indptr
        return mtx


class _CSRDataset(BaseCompressedSparseDataset, abc.CSRDataset):
    """Internal concrete version of :class:`anndata.abc.CSRDataset`."""


class _CSCDataset(BaseCompressedSparseDataset, abc.CSCDataset):
    """Internal concrete version of :class:`anndata.abc.CSRDataset`."""


def sparse_dataset(
    group: GroupStorageType,
    *,
    should_cache_indptr: bool = True,
) -> abc.CSRDataset | abc.CSCDataset:
    """Generates a backed mode-compatible sparse dataset class.

    Parameters
    ----------
    group
        The backing group store.
    should_cache_indptr
        Whether or not to cache the indptr for repeated reuse as a :class:`numpy.ndarray`.
        The default is `True` but one might set it to false if the dataset is repeatedly reopened
        using this command, and then only a subset is read in before closing again.
        See https://github.com/scverse/anndata/blob/3c489b979086c39c59d3eb5dad90ebacce3b9a80/src/anndata/_io/specs/lazy_methods.py#L85-L95
        for the target use-case.

    Returns
    -------
        Sparse dataset class.

    Example
    -------

    First we'll need a stored dataset:

    >>> import scanpy as sc
    >>> import h5py
    >>> from anndata.io import sparse_dataset
    >>> from anndata.io import read_elem
    >>> sc.datasets.pbmc68k_reduced().raw.to_adata().write_h5ad("pbmc.h5ad")

    Initialize a sparse dataset from storage

    >>> f = h5py.File("pbmc.h5ad")
    >>> X = sparse_dataset(f["X"])
    >>> X
    CSRDataset: backend hdf5, shape (700, 765), data_dtype float32

    Indexing returns sparse matrices

    >>> X[100:200]  # doctest: +ELLIPSIS
    <...sparse matrix of...float32...with 25003 stored elements...>

    These can also be used inside of an AnnData object, no need for backed mode

    >>> from anndata import AnnData
    >>> adata = AnnData(
    ...     layers={"backed": X}, obs=read_elem(f["obs"]), var=read_elem(f["var"])
    ... )
    >>> adata.layers["backed"]
    CSRDataset: backend hdf5, shape (700, 765), data_dtype float32

    Indexing access (i.e., from views) brings selection into memory

    >>> adata[adata.obs["bulk_labels"] == "CD56+ NK"].layers[
    ...     "backed"
    ... ]  # doctest: +ELLIPSIS
    <...sparse matrix of...float32...with 7340 stored elements...>
    """
    encoding_type = _get_group_format(group)
    if encoding_type == "csr":
        return _CSRDataset(group, should_cache_indptr=should_cache_indptr)
    elif encoding_type == "csc":
        return _CSCDataset(group, should_cache_indptr=should_cache_indptr)
    msg = f"Unknown encoding type {encoding_type}"
    raise ValueError(msg)


@_subset.register(BaseCompressedSparseDataset)
def subset_sparsedataset(
    d, subset_idx: tuple[Index1DNorm] | tuple[Index1DNorm, Index1DNorm]
):
    return d[subset_idx]