1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
|
from __future__ import annotations
import warnings
import numpy as np
import pandas as pd
import pytest
from anndata import AnnData, ImplicitModificationWarning, read_h5ad
from anndata.tests.helpers import gen_typed_df_t2_size
X_ = np.arange(12).reshape((3, 4))
L = np.arange(12).reshape((3, 4)) + 12
@pytest.fixture(params=[X_, None])
def X(request):
return request.param
def test_creation(X: np.ndarray | None):
adata = AnnData(X=X, layers=dict(L=L.copy()))
assert list(adata.layers.keys()) == ["L"]
assert "L" in adata.layers
assert "X" not in adata.layers
assert "some_other_thing" not in adata.layers
assert (adata.layers["L"] == L).all()
assert adata.shape == L.shape
def test_views():
adata = AnnData(X=X_, layers=dict(L=L.copy()))
adata_view = adata[1:, 1:]
assert adata_view.layers.is_view
assert adata_view.layers.parent_mapping == adata.layers
assert adata_view.layers.keys() == adata.layers.keys()
assert (adata_view.layers["L"] == adata.layers["L"][1:, 1:]).all()
adata.layers["S"] = X_
assert adata_view.layers.keys() == adata.layers.keys()
assert (adata_view.layers["S"] == adata.layers["S"][1:, 1:]).all()
with pytest.warns(ImplicitModificationWarning):
adata_view.layers["T"] = X_[1:, 1:]
assert not adata_view.layers.is_view
assert not adata_view.is_view
@pytest.mark.parametrize(
("df", "homogenous", "dtype"),
[
(lambda: gen_typed_df_t2_size(*X_.shape), True, np.object_),
(lambda: pd.DataFrame(X_**2), False, np.int_),
],
)
def test_set_dataframe(homogenous, df, dtype):
adata = AnnData(X_)
if homogenous:
with pytest.warns(UserWarning, match=r"Layer 'df'.*dtype object"):
adata.layers["df"] = df()
else:
with warnings.catch_warnings():
warnings.simplefilter("error")
adata.layers["df"] = df()
assert isinstance(adata.layers["df"], np.ndarray)
assert np.issubdtype(adata.layers["df"].dtype, dtype)
def test_readwrite(X: np.ndarray | None, backing_h5ad):
adata = AnnData(X=X, layers=dict(L=L.copy()))
adata.write(backing_h5ad)
adata_read = read_h5ad(backing_h5ad)
assert adata.layers.keys() == adata_read.layers.keys()
assert (adata.layers["L"] == adata_read.layers["L"]).all()
def test_backed():
# backed mode for layers isn’t implemented, layers stay in memory
pass
def test_copy():
adata = AnnData(X=X_, layers=dict(L=L.copy()))
bdata = adata.copy()
# check that we don’t create too many references
assert bdata._layers is bdata.layers._data
# check that we have a copy
adata.layers["L"] += 10
assert np.all(adata.layers["L"] != bdata.layers["L"]) # 201
def test_shape_error():
adata = AnnData(X=X_)
with pytest.raises(
ValueError,
match=(
r"Value passed for key 'L' is of incorrect shape\. "
r"Values of layers must match dimensions \('obs', 'var'\) of parent\. "
r"Value had shape \(4, 4\) while it should have had \(3, 4\)\."
),
):
adata.layers["L"] = np.zeros((X_.shape[0] + 1, X_.shape[1]))
|