File: anndata.py

package info (click to toggle)
python-anndata 0.7.5%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 628 kB
  • sloc: python: 7,779; makefile: 8
file content (2008 lines) | stat: -rw-r--r-- 72,411 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
"""\
Main class and helper functions.
"""
import warnings
import collections.abc as cabc
from collections import OrderedDict
from copy import copy, deepcopy
from enum import Enum
from functools import partial, singledispatch
from pathlib import Path
from os import PathLike
from typing import Any, Union, Optional  # Meta
from typing import Iterable, Sequence, Mapping, MutableMapping  # Generic ABCs
from typing import Tuple, List  # Generic

import h5py
from natsort import natsorted
import numpy as np
from numpy import ma
import pandas as pd
from pandas.api.types import is_string_dtype, is_categorical_dtype
from scipy import sparse
from scipy.sparse import issparse

from .raw import Raw
from .index import _normalize_indices, _subset, Index, Index1D, get_vector
from .file_backing import AnnDataFileManager
from .access import ElementRef
from .aligned_mapping import (
    AxisArrays,
    AxisArraysView,
    PairwiseArrays,
    PairwiseArraysView,
    Layers,
    LayersView,
)
from .views import (
    ArrayView,
    DictView,
    DataFrameView,
    as_view,
    _resolve_idxs,
)
from .sparse_dataset import SparseDataset
from .. import utils
from ..utils import convert_to_dict, ensure_df_homogeneous
from ..logging import anndata_logger as logger
from ..compat import (
    ZarrArray,
    ZappyArray,
    DaskArray,
    Literal,
    _slice_uns_sparse_matrices,
    _move_adj_mtx,
    _overloaded_uns,
    OverloadedDict,
)


class StorageType(Enum):
    Array = np.ndarray
    Masked = ma.MaskedArray
    Sparse = sparse.spmatrix
    ZarrArray = ZarrArray
    ZappyArray = ZappyArray
    DaskArray = DaskArray

    @classmethod
    def classes(cls):
        return tuple(c.value for c in cls.__members__.values())


# for backwards compat
def _find_corresponding_multicol_key(key, keys_multicol):
    """Find the corresponding multicolumn key."""
    for mk in keys_multicol:
        if key.startswith(mk) and "of" in key:
            return mk
    return None


# for backwards compat
def _gen_keys_from_multicol_key(key_multicol, n_keys):
    """Generates single-column keys from multicolumn key."""
    keys = [f"{key_multicol}{i + 1:03}of{n_keys:03}" for i in range(n_keys)]
    return keys


def _check_2d_shape(X):
    """\
    Check shape of array or sparse matrix.

    Assure that X is always 2D: Unlike numpy we always deal with 2D arrays.
    """
    if X.dtype.names is None and len(X.shape) != 2:
        raise ValueError(
            f"X needs to be 2-dimensional, not {len(X.shape)}-dimensional."
        )


@singledispatch
def _gen_dataframe(anno, length, index_names):
    if anno is None or len(anno) == 0:
        return pd.DataFrame(index=pd.RangeIndex(0, length, name=None).astype(str))
    for index_name in index_names:
        if index_name in anno:
            return pd.DataFrame(
                anno,
                index=anno[index_name],
                columns=[k for k in anno.keys() if k != index_name],
            )
    return pd.DataFrame(anno, index=pd.RangeIndex(0, length, name=None).astype(str))


@_gen_dataframe.register(pd.DataFrame)
def _(anno, length, index_names):
    anno = anno.copy()
    if not is_string_dtype(anno.index):
        warnings.warn("Transforming to str index.", ImplicitModificationWarning)
        anno.index = anno.index.astype(str)
    return anno


@_gen_dataframe.register(pd.Series)
@_gen_dataframe.register(pd.Index)
def _(anno, length, index_names):
    raise ValueError(f"Cannot convert {type(anno)} to DataFrame")


class ImplicitModificationWarning(UserWarning):
    """\
    Raised whenever initializing an object or assigning a property changes
    the type of a part of a parameter or the value being assigned.

    Examples
    ========
    >>> import pandas as pd
    >>> adata = AnnData(obs=pd.DataFrame(index=[0, 1, 2]))  # doctest: +SKIP
    ImplicitModificationWarning: Transforming to str index.
    """

    pass


class AnnData(metaclass=utils.DeprecationMixinMeta):
    """\
    An annotated data matrix.

    :class:`~anndata.AnnData` stores a data matrix :attr:`X` together with annotations
    of observations :attr:`obs` (:attr:`obsm`, :attr:`obsp`),
    variables :attr:`var` (:attr:`varm`, :attr:`varp`),
    and unstructured annotations :attr:`uns`.

    .. figure:: https://falexwolf.de/img/scanpy/anndata.svg
       :width: 350px

    An :class:`~anndata.AnnData` object `adata` can be sliced like a
    :class:`~pandas.DataFrame`,
    for instance `adata_subset = adata[:, list_of_variable_names]`.
    :class:`~anndata.AnnData`’s basic structure is similar to R’s ExpressionSet
    [Huber15]_. If setting an `.h5ad`-formatted HDF5 backing file `.filename`,
    data remains on the disk but is automatically loaded into memory if needed.
    See this `blog post`_ for more details.

    .. _blog post: http://falexwolf.de/blog/171223_AnnData_indexing_views_HDF5-backing/

    Parameters
    ----------
    X
        A #observations × #variables data matrix. A view of the data is used if the
        data type matches, otherwise, a copy is made.
    obs
        Key-indexed one-dimensional observations annotation of length #observations.
    var
        Key-indexed one-dimensional variables annotation of length #variables.
    uns
        Key-indexed unstructured annotation.
    obsm
        Key-indexed multi-dimensional observations annotation of length #observations.
        If passing a :class:`~numpy.ndarray`, it needs to have a structured datatype.
    varm
        Key-indexed multi-dimensional variables annotation of length #variables.
        If passing a :class:`~numpy.ndarray`, it needs to have a structured datatype.
    layers
        Key-indexed multi-dimensional arrays aligned to dimensions of `X`.
    dtype
        Data type used for storage.
    shape
        Shape tuple (#observations, #variables). Can only be provided if `X` is `None`.
    filename
        Name of backing file. See :class:`h5py.File`.
    filemode
        Open mode of backing file. See :class:`h5py.File`.

    See Also
    --------
    read_h5ad
    read_csv
    read_excel
    read_hdf
    read_loom
    read_zarr
    read_mtx
    read_text
    read_umi_tools

    Notes
    -----
    :class:`~anndata.AnnData` stores observations (samples) of variables/features
    in the rows of a matrix.
    This is the convention of the modern classics of statistics [Hastie09]_
    and machine learning [Murphy12]_,
    the convention of dataframes both in R and Python and the established statistics
    and machine learning packages in Python (statsmodels_, scikit-learn_).

    Single dimensional annotations of the observation and variables are stored
    in the :attr:`obs` and :attr:`var` attributes as :class:`~pandas.DataFrame`\\ s.
    This is intended for metrics calculated over their axes.
    Multi-dimensional annotations are stored in :attr:`obsm` and :attr:`varm`,
    which are aligned to the objects observation and variable dimensions respectively.
    Square matrices representing graphs are stored in :attr:`obsp` and :attr:`varp`,
    with both of their own dimensions aligned to their associated axis.
    Additional measurements across both observations and variables are stored in
    :attr:`layers`.

    Indexing into an AnnData object can be performed by relative position
    with numeric indices (like pandas’ :meth:`~pandas.DataFrame.iloc`),
    or by labels (like :meth:`~pandas.DataFrame.loc`).
    To avoid ambiguity with numeric indexing into observations or variables,
    indexes of the AnnData object are converted to strings by the constructor.

    Subsetting an AnnData object by indexing into it will also subset its elements
    according to the dimensions they were aligned to.
    This means an operation like `adata[list_of_obs, :]` will also subset :attr:`obs`,
    :attr:`obsm`, and :attr:`layers`.

    Subsetting an AnnData object returns a view into the original object,
    meaning very little additional memory is used upon subsetting.
    This is achieved lazily, meaning that the constituent arrays are subset on access.
    Copying a view causes an equivalent “real” AnnData object to be generated.
    Attempting to modify a view (at any attribute except X) is handled
    in a copy-on-modify manner, meaning the object is initialized in place.
    Here’s an example::

        batch1 = adata[adata.obs["batch"] == "batch1", :]
        batch1.obs["value"] = 0  # This makes batch1 a “real” AnnData object

    At the end of this snippet: `adata` was not modified,
    and `batch1` is its own AnnData object with its own data.

    Similar to Bioconductor’s `ExpressionSet` and :mod:`scipy.sparse` matrices,
    subsetting an AnnData object retains the dimensionality of its constituent arrays.
    Therefore, unlike with the classes exposed by :mod:`pandas`, :mod:`numpy`,
    and `xarray`, there is no concept of a one dimensional AnnData object.
    AnnDatas always have two inherent dimensions, :attr:`obs` and :attr:`var`.
    Additionally, maintaining the dimensionality of the AnnData object allows for
    consistent handling of :mod:`scipy.sparse` matrices and :mod:`numpy` arrays.

    .. _statsmodels: http://www.statsmodels.org/stable/index.html
    .. _scikit-learn: http://scikit-learn.org/
    """

    _BACKED_ATTRS = ["X", "raw.X"]

    # backwards compat
    _H5_ALIASES = dict(
        X={"X", "_X", "data", "_data"},
        obs={"obs", "_obs", "smp", "_smp"},
        var={"var", "_var"},
        uns={"uns"},
        obsm={"obsm", "_obsm", "smpm", "_smpm"},
        varm={"varm", "_varm"},
        layers={"layers", "_layers"},
    )

    _H5_ALIASES_NAMES = dict(
        obs={"obs_names", "smp_names", "row_names", "index"},
        var={"var_names", "col_names", "index"},
    )

    def __init__(
        self,
        X: Optional[Union[np.ndarray, sparse.spmatrix, pd.DataFrame]] = None,
        obs: Optional[Union[pd.DataFrame, Mapping[str, Iterable[Any]]]] = None,
        var: Optional[Union[pd.DataFrame, Mapping[str, Iterable[Any]]]] = None,
        uns: Optional[Mapping[str, Any]] = None,
        obsm: Optional[Union[np.ndarray, Mapping[str, Sequence[Any]]]] = None,
        varm: Optional[Union[np.ndarray, Mapping[str, Sequence[Any]]]] = None,
        layers: Optional[Mapping[str, Union[np.ndarray, sparse.spmatrix]]] = None,
        raw: Optional[Mapping[str, Any]] = None,
        dtype: Union[np.dtype, str] = "float32",
        shape: Optional[Tuple[int, int]] = None,
        filename: Optional[PathLike] = None,
        filemode: Optional[Literal["r", "r+"]] = None,
        asview: bool = False,
        *,
        obsp: Optional[Union[np.ndarray, Mapping[str, Sequence[Any]]]] = None,
        varp: Optional[Union[np.ndarray, Mapping[str, Sequence[Any]]]] = None,
        oidx: Index1D = None,
        vidx: Index1D = None,
    ):
        if asview:
            if not isinstance(X, AnnData):
                raise ValueError("`X` has to be an AnnData object.")
            self._init_as_view(X, oidx, vidx)
        else:
            self._init_as_actual(
                X=X,
                obs=obs,
                var=var,
                uns=uns,
                obsm=obsm,
                varm=varm,
                raw=raw,
                layers=layers,
                dtype=dtype,
                shape=shape,
                obsp=obsp,
                varp=varp,
                filename=filename,
                filemode=filemode,
            )

    def _init_as_view(self, adata_ref: "AnnData", oidx: Index, vidx: Index):
        if adata_ref.isbacked and adata_ref.is_view:
            raise ValueError(
                "Currently, you cannot index repeatedly into a backed AnnData, "
                "that is, you cannot make a view of a view."
            )
        self._is_view = True
        if isinstance(oidx, (int, np.integer)):
            oidx = slice(oidx, oidx + 1, 1)
        if isinstance(vidx, (int, np.integer)):
            vidx = slice(vidx, vidx + 1, 1)
        if adata_ref.is_view:
            prev_oidx, prev_vidx = adata_ref._oidx, adata_ref._vidx
            adata_ref = adata_ref._adata_ref
            oidx, vidx = _resolve_idxs((prev_oidx, prev_vidx), (oidx, vidx), adata_ref)
        self._adata_ref = adata_ref
        self._oidx = oidx
        self._vidx = vidx
        # the file is the same as of the reference object
        self.file = adata_ref.file
        # views on attributes of adata_ref
        obs_sub = adata_ref.obs.iloc[oidx]
        var_sub = adata_ref.var.iloc[vidx]
        self._obsm = adata_ref.obsm._view(self, (oidx,))
        self._varm = adata_ref.varm._view(self, (vidx,))
        self._layers = adata_ref.layers._view(self, (oidx, vidx))
        self._obsp = adata_ref.obsp._view(self, oidx)
        self._varp = adata_ref.varp._view(self, vidx)
        # Speical case for old neighbors, backwards compat. Remove in anndata 0.8.
        uns_new = _slice_uns_sparse_matrices(
            copy(adata_ref._uns), self._oidx, adata_ref.n_obs
        )
        # fix categories
        self._remove_unused_categories(adata_ref.obs, obs_sub, uns_new)
        self._remove_unused_categories(adata_ref.var, var_sub, uns_new)
        # set attributes
        self._obs = DataFrameView(obs_sub, view_args=(self, "obs"))
        self._var = DataFrameView(var_sub, view_args=(self, "var"))
        self._uns = DictView(uns_new, view_args=(self, "uns"))
        self._n_obs = len(self.obs)
        self._n_vars = len(self.var)

        # set data
        if self.isbacked:
            self._X = None

        # set raw, easy, as it’s immutable anyways...
        if adata_ref._raw is not None:
            # slicing along variables axis is ignored
            self._raw = adata_ref.raw[oidx]
            self._raw._adata = self
        else:
            self._raw = None

    def _init_as_actual(
        self,
        X=None,
        obs=None,
        var=None,
        uns=None,
        obsm=None,
        varm=None,
        varp=None,
        obsp=None,
        raw=None,
        layers=None,
        dtype="float32",
        shape=None,
        filename=None,
        filemode=None,
    ):
        # view attributes
        self._is_view = False
        self._adata_ref = None
        self._oidx = None
        self._vidx = None

        # ----------------------------------------------------------------------
        # various ways of initializing the data
        # ----------------------------------------------------------------------

        # If X is a data frame, we store its indices for verification
        x_indices = []

        # init from file
        if filename is not None:
            self.file = AnnDataFileManager(self, filename, filemode)
        else:
            self.file = AnnDataFileManager(self, None)

            # init from AnnData
            if isinstance(X, AnnData):
                if any((obs, var, uns, obsm, varm, obsp, varp)):
                    raise ValueError(
                        "If `X` is a dict no further arguments must be provided."
                    )
                X, obs, var, uns, obsm, varm, obsp, varp, layers, raw = (
                    X._X,
                    X.obs,
                    X.var,
                    X.uns,
                    X.obsm,
                    X.varm,
                    X.obsp,
                    X.varp,
                    X.layers,
                    X.raw,
                )

            # init from DataFrame
            elif isinstance(X, pd.DataFrame):
                # to verify index matching, we wait until obs and var are DataFrames
                if obs is None:
                    obs = pd.DataFrame(index=X.index)
                elif not isinstance(X.index, pd.RangeIndex):
                    x_indices.append(("obs", "index", X.index))
                if var is None:
                    var = pd.DataFrame(index=X.columns)
                elif not isinstance(X.columns, pd.RangeIndex):
                    x_indices.append(("var", "columns", X.columns))
                X = ensure_df_homogeneous(X, "X")

        # ----------------------------------------------------------------------
        # actually process the data
        # ----------------------------------------------------------------------

        # check data type of X
        if X is not None:
            for s_type in StorageType:
                if isinstance(X, s_type.value):
                    break
            else:
                class_names = ", ".join(c.__name__ for c in StorageType.classes())
                raise ValueError(
                    f"`X` needs to be of one of {class_names}, not {type(X)}."
                )
            if shape is not None:
                raise ValueError("`shape` needs to be `None` if `X` is not `None`.")
            _check_2d_shape(X)
            # if type doesn’t match, a copy is made, otherwise, use a view
            if issparse(X) or isinstance(X, ma.MaskedArray):
                # TODO: maybe use view on data attribute of sparse matrix
                #       as in readwrite.read_10x_h5
                if X.dtype != np.dtype(dtype):
                    X = X.astype(dtype)
            elif isinstance(X, ZarrArray):
                X = X.astype(dtype)
            else:  # is np.ndarray or a subclass, convert to true np.ndarray
                X = np.array(X, dtype, copy=False)
            # data matrix and shape
            self._X = X
            self._n_obs, self._n_vars = self._X.shape
        else:
            self._X = None
            self._n_obs = len([] if obs is None else obs)
            self._n_vars = len([] if var is None else var)
            # check consistency with shape
            if shape is not None:
                if self._n_obs == 0:
                    self._n_obs = shape[0]
                else:
                    if self._n_obs != shape[0]:
                        raise ValueError("`shape` is inconsistent with `obs`")
                if self._n_vars == 0:
                    self._n_vars = shape[1]
                else:
                    if self._n_vars != shape[1]:
                        raise ValueError("`shape` is inconsistent with `var`")

        # annotations
        self._obs = _gen_dataframe(obs, self._n_obs, ["obs_names", "row_names"])
        self._var = _gen_dataframe(var, self._n_vars, ["var_names", "col_names"])

        # now we can verify if indices match!
        for attr_name, x_name, idx in x_indices:
            attr = getattr(self, attr_name)
            if isinstance(attr.index, pd.RangeIndex):
                attr.index = idx
            elif not idx.equals(attr.index):
                raise ValueError(f"Index of {attr_name} must match {x_name} of X.")

        # unstructured annotations
        self.uns = uns or OrderedDict()

        # TODO: Think about consequences of making obsm a group in hdf
        self._obsm = AxisArrays(self, 0, vals=convert_to_dict(obsm))
        self._varm = AxisArrays(self, 1, vals=convert_to_dict(varm))

        self._obsp = PairwiseArrays(self, 0, vals=convert_to_dict(obsp))
        self._varp = PairwiseArrays(self, 1, vals=convert_to_dict(varp))

        # Backwards compat for connectivities matrices in uns["neighbors"]
        _move_adj_mtx({"uns": self._uns, "obsp": self._obsp})

        self._check_dimensions()
        self._check_uniqueness()

        if self.filename:
            assert not isinstance(
                raw, Raw
            ), "got raw from other adata but also filename?"
            if {"raw", "raw.X"} & set(self.file):
                raw = dict(X=None, **raw)
        if not raw:
            self._raw = None
        elif isinstance(raw, cabc.Mapping):
            self._raw = Raw(self, **raw)
        else:  # is a Raw from another AnnData
            self._raw = Raw(self, raw._X, raw.var, raw.varm)

        # clean up old formats
        self._clean_up_old_format(uns)

        # layers
        self._layers = Layers(self, layers)

    def __sizeof__(self) -> int:
        size = 0
        for attr in ["_X", "_obs", "_var", "_uns", "_obsm", "_varm"]:
            s = getattr(self, attr).__sizeof__()
            size += s
        return size

    def _gen_repr(self, n_obs, n_vars) -> str:
        if self.isbacked:
            backed_at = f" backed at {str(self.filename)!r}"
        else:
            backed_at = ""
        descr = f"AnnData object with n_obs × n_vars = {n_obs} × {n_vars}{backed_at}"
        for attr in [
            "obs",
            "var",
            "uns",
            "obsm",
            "varm",
            "layers",
            "obsp",
            "varp",
        ]:
            keys = getattr(self, attr).keys()
            if len(keys) > 0:
                descr += f"\n    {attr}: {str(list(keys))[1:-1]}"
        return descr

    def __repr__(self) -> str:
        if self.is_view:
            return "View of " + self._gen_repr(self.n_obs, self.n_vars)
        else:
            return self._gen_repr(self.n_obs, self.n_vars)

    def __eq__(self, other):
        """Equality testing"""
        raise NotImplementedError(
            "Equality comparisons are not supported for AnnData objects, "
            "instead compare the desired attributes."
        )

    @property
    def shape(self) -> Tuple[int, int]:
        """Shape of data matrix (:attr:`n_obs`, :attr:`n_vars`)."""
        return self.n_obs, self.n_vars

    @property
    def X(self) -> Optional[Union[np.ndarray, sparse.spmatrix, ArrayView]]:
        """Data matrix of shape :attr:`n_obs` × :attr:`n_vars`."""
        if self.isbacked:
            if not self.file.is_open:
                self.file.open()
            X = self.file["X"]
            if isinstance(X, h5py.Group):
                X = SparseDataset(X)
            # TODO: This should get replaced/ handled elsewhere
            # This is so that we can index into a backed dense dataset with
            # indices that aren’t strictly increasing
            if self.is_view and isinstance(X, h5py.Dataset):
                ordered = [self._oidx, self._vidx]  # this will be mutated
                rev_order = [slice(None), slice(None)]
                for axis, axis_idx in enumerate(ordered.copy()):
                    if isinstance(axis_idx, np.ndarray) and axis_idx.dtype.type != bool:
                        order = np.argsort(axis_idx)
                        ordered[axis] = axis_idx[order]
                        rev_order[axis] = np.argsort(order)
                # from hdf5, then to real order
                X = X[tuple(ordered)][tuple(rev_order)]
            elif self.is_view:
                X = X[self._oidx, self._vidx]
        elif self.is_view:
            X = as_view(
                _subset(self._adata_ref.X, (self._oidx, self._vidx)),
                ElementRef(self, "X"),
            )
        else:
            X = self._X
        return X
        # if self.n_obs == 1 and self.n_vars == 1:
        #     return X[0, 0]
        # elif self.n_obs == 1 or self.n_vars == 1:
        #     if issparse(X): X = X.toarray()
        #     return X.flatten()
        # else:
        #     return X

    @X.setter
    def X(self, value: Optional[Union[np.ndarray, sparse.spmatrix]]):
        if not isinstance(value, StorageType.classes()) and not np.isscalar(value):
            if hasattr(value, "to_numpy") and hasattr(value, "dtypes"):
                value = ensure_df_homogeneous(value, "X")
            else:  # TODO: asarray? asanyarray?
                value = np.array(value)
        if value is None:
            if self.is_view:
                raise ValueError(
                    "Copy the view before setting the data matrix to `None`."
                )
            if self.isbacked:
                raise ValueError("Not implemented.")
            self._X = None
            return
        # If indices are both arrays, we need to modify them
        # so we don’t set values like coordinates
        # This can occur if there are succesive views
        if (
            self.is_view
            and isinstance(self._oidx, np.ndarray)
            and isinstance(self._vidx, np.ndarray)
        ):
            oidx, vidx = np.ix_(self._oidx, self._vidx)
        else:
            oidx, vidx = self._oidx, self._vidx
        if (
            np.isscalar(value)
            or (self.n_vars == 1 and self.n_obs == len(value))
            or (self.n_obs == 1 and self.n_vars == len(value))
            or self.shape == value.shape
        ):
            if not np.isscalar(value) and self.shape != value.shape:
                # For assigning vector of values to 2d array or matrix
                # Not neccesary for row of 2d array
                value = value.reshape(self.shape)
            if self.isbacked:
                if self.is_view:
                    X = self.file["X"]
                    if isinstance(X, h5py.Group):
                        X = SparseDataset(X)
                    X[oidx, vidx] = value
                else:
                    self._set_backed("X", value)
            else:
                if self.is_view:
                    if sparse.issparse(self._adata_ref._X) and isinstance(
                        value, np.ndarray
                    ):
                        value = sparse.coo_matrix(value)
                    self._adata_ref._X[oidx, vidx] = value
                else:
                    self._X = value
        else:
            raise ValueError(
                f"Data matrix has wrong shape {value.shape}, "
                f"need to be {self.shape}."
            )

    @property
    def layers(self) -> Union[Layers, LayersView]:
        """\
        Dictionary-like object with values of the same dimensions as :attr:`X`.

        Layers in AnnData are inspired by loompy’s :ref:`loomlayers`.

        Return the layer named `"unspliced"`::

            adata.layers["unspliced"]

        Create or replace the `"spliced"` layer::

            adata.layers["spliced"] = ...

        Assign the 10th column of layer `"spliced"` to the variable a::

            a = adata.layers["spliced"][:, 10]

        Delete the `"spliced"` layer::

            del adata.layers["spliced"]

        Return layers’ names::

            adata.layers.keys()
        """
        return self._layers

    @layers.setter
    def layers(self, value):
        layers = Layers(self, vals=convert_to_dict(value))
        if self.is_view:
            self._init_as_actual(self.copy())
        self._layers = layers

    @layers.deleter
    def layers(self):
        self.layers = dict()

    @property
    def raw(self) -> Raw:
        """\
        Store raw version of :attr:`X` and :attr:`var` as `.raw.X` and `.raw.var`.

        The :attr:`raw` attribute is initialized with the current content
        of an object by setting::

            adata.raw = adata

        Its content can be deleted::

            adata.raw = None
            # or
            del adata.raw

        Upon slicing an AnnData object along the obs (row) axis, :attr:`raw`
        is also sliced. Slicing an AnnData object along the vars (columns) axis
        leaves :attr:`raw` unaffected. Note that you can call::

             adata.raw[:, 'orig_variable_name'].X

        to retrieve the data associated with a variable that might have been
        filtered out or "compressed away" in :attr:`X`.
        """
        return self._raw

    @raw.setter
    def raw(self, value: "AnnData"):
        if value is None:
            del self.raw
        elif not isinstance(value, AnnData):
            raise ValueError("Can only init raw attribute with an AnnData object.")
        else:
            if self.is_view:
                self._init_as_actual(self.copy())
            self._raw = Raw(value)

    @raw.deleter
    def raw(self):
        if self.is_view:
            self._init_as_actual(self.copy())
        self._raw = None

    @property
    def n_obs(self) -> int:
        """Number of observations."""
        return self._n_obs

    @property
    def n_vars(self) -> int:
        """Number of variables/features."""
        return self._n_vars

    def _set_dim_df(self, value: pd.DataFrame, attr: str):
        if not isinstance(value, pd.DataFrame):
            raise ValueError(f"Can only assign pd.DataFrame to {attr}.")
        value_idx = self._prep_dim_index(value.index, attr)
        if self.is_view:
            self._init_as_actual(self.copy())
        setattr(self, f"_{attr}", value)
        self._set_dim_index(value_idx, attr)

    def _prep_dim_index(self, value, attr: str) -> pd.Index:
        """Prepares index to be uses as obs_names or var_names for AnnData object.AssertionError

        If a pd.Index is passed, this will use a reference, otherwise a new index object is created.
        """
        if self.shape[attr == "var"] != len(value):
            raise ValueError(
                f"Length of passed value for {attr}_names is {len(value)}, but this AnnData has shape: {self.shape}"
            )
        if isinstance(value, pd.Index) and not isinstance(
            value.name, (str, type(None))
        ):
            raise ValueError(
                f"AnnData expects .{attr}.index.name to be a string or None, "
                f"but you passed a name of type {type(value.name).__name__!r}"
            )
        else:
            value = pd.Index(value)
            if not isinstance(value.name, (str, type(None))):
                value.name = None
        if not isinstance(value, pd.RangeIndex) and not isinstance(
            value[0], (str, bytes)
        ):
            logger.warning(
                f"AnnData expects .{attr}.index to contain strings, "
                f"but your first indices are: {value[:2]}, …"
            )
        return value

    def _set_dim_index(self, value: pd.Index, attr: str):
        # Assumes _prep_dim_index has been run
        if self.is_view:
            self._init_as_actual(self.copy())
        getattr(self, attr).index = value
        for v in getattr(self, f"{attr}m").values():
            if isinstance(v, pd.DataFrame):
                v.index = value

    @property
    def obs(self) -> pd.DataFrame:
        """One-dimensional annotation of observations (`pd.DataFrame`)."""
        return self._obs

    @obs.setter
    def obs(self, value: pd.DataFrame):
        self._set_dim_df(value, "obs")

    @obs.deleter
    def obs(self):
        self.obs = pd.DataFrame(index=self.obs_names)

    @property
    def obs_names(self) -> pd.Index:
        """Names of observations (alias for `.obs.index`)."""
        return self.obs.index

    @obs_names.setter
    def obs_names(self, names: Sequence[str]):
        names = self._prep_dim_index(names, "obs")
        self._set_dim_index(names, "obs")

    @property
    def var(self) -> pd.DataFrame:
        """One-dimensional annotation of variables/ features (`pd.DataFrame`)."""
        return self._var

    @var.setter
    def var(self, value: pd.DataFrame):
        self._set_dim_df(value, "var")

    @var.deleter
    def var(self):
        self.var = pd.DataFrame(index=self.var_names)

    @property
    def var_names(self) -> pd.Index:
        """Names of variables (alias for `.var.index`)."""
        return self.var.index

    @var_names.setter
    def var_names(self, names: Sequence[str]):
        names = self._prep_dim_index(names, "var")
        self._set_dim_index(names, "var")

    @property
    def uns(self) -> MutableMapping:
        """Unstructured annotation (ordered dictionary)."""
        uns = _overloaded_uns(self)
        if self.is_view:
            uns = DictView(uns, view_args=(self, "uns"))
        return uns

    @uns.setter
    def uns(self, value: MutableMapping):
        if not isinstance(value, MutableMapping):
            raise ValueError(
                "Only mutable mapping types (e.g. dict) are allowed for `.uns`."
            )
        if isinstance(value, (OverloadedDict, DictView)):
            value = value.copy()
        if self.is_view:
            self._init_as_actual(self.copy())
        self._uns = value

    @uns.deleter
    def uns(self):
        self.uns = OrderedDict()

    @property
    def obsm(self) -> Union[AxisArrays, AxisArraysView]:
        """\
        Multi-dimensional annotation of observations
        (mutable structured :class:`~numpy.ndarray`).

        Stores for each key a two or higher-dimensional :class:`~numpy.ndarray`
        of length `n_obs`.
        Is sliced with `data` and `obs` but behaves otherwise like a :term:`mapping`.
        """
        return self._obsm

    @obsm.setter
    def obsm(self, value):
        obsm = AxisArrays(self, 0, vals=convert_to_dict(value))
        if self.is_view:
            self._init_as_actual(self.copy())
        self._obsm = obsm

    @obsm.deleter
    def obsm(self):
        self.obsm = dict()

    @property
    def varm(self) -> Union[AxisArrays, AxisArraysView]:
        """\
        Multi-dimensional annotation of variables/features
        (mutable structured :class:`~numpy.ndarray`).

        Stores for each key a two or higher-dimensional :class:`~numpy.ndarray`
        of length `n_vars`.
        Is sliced with `data` and `var` but behaves otherwise like a :term:`mapping`.
        """
        return self._varm

    @varm.setter
    def varm(self, value):
        varm = AxisArrays(self, 1, vals=convert_to_dict(value))
        if self.is_view:
            self._init_as_actual(self.copy())
        self._varm = varm

    @varm.deleter
    def varm(self):
        self.varm = dict()

    @property
    def obsp(self) -> Union[PairwiseArrays, PairwiseArraysView]:
        """\
        Pairwise annotation of observations,
        a mutable mapping with array-like values.

        Stores for each key a two or higher-dimensional :class:`~numpy.ndarray`
        whose first two dimensions are of length `n_obs`.
        Is sliced with `data` and `obs` but behaves otherwise like a :term:`mapping`.
        """
        return self._obsp

    @obsp.setter
    def obsp(self, value):
        obsp = PairwiseArrays(self, 0, vals=convert_to_dict(value))
        if self.is_view:
            self._init_as_actual(self.copy())
        self._obsp = obsp

    @obsp.deleter
    def obsp(self):
        self.obsp = dict()

    @property
    def varp(self) -> Union[PairwiseArrays, PairwiseArraysView]:
        """\
        Pairwise annotation of observations,
        a mutable mapping with array-like values.

        Stores for each key a two or higher-dimensional :class:`~numpy.ndarray`
        whose first two dimensions are of length `n_var`.
        Is sliced with `data` and `var` but behaves otherwise like a :term:`mapping`.
        """
        return self._varp

    @varp.setter
    def varp(self, value):
        varp = PairwiseArrays(self, 1, vals=convert_to_dict(value))
        if self.is_view:
            self._init_as_actual(self.copy())
        self._varp = varp

    @varp.deleter
    def varp(self):
        self.varp = dict()

    def obs_keys(self) -> List[str]:
        """List keys of observation annotation :attr:`obs`."""
        return self._obs.keys().tolist()

    def var_keys(self) -> List[str]:
        """List keys of variable annotation :attr:`var`."""
        return self._var.keys().tolist()

    def obsm_keys(self) -> List[str]:
        """List keys of observation annotation :attr:`obsm`."""
        return list(self._obsm.keys())

    def varm_keys(self) -> List[str]:
        """List keys of variable annotation :attr:`varm`."""
        return list(self._varm.keys())

    def uns_keys(self) -> List[str]:
        """List keys of unstructured annotation."""
        return sorted(list(self._uns.keys()))

    @property
    def isbacked(self) -> bool:
        """`True` if object is backed on disk, `False` otherwise."""
        return self.filename is not None

    @property
    def is_view(self) -> bool:
        """`True` if object is view of another AnnData object, `False` otherwise."""
        return self._is_view

    @property
    def filename(self) -> Optional[Path]:
        """\
        Change to backing mode by setting the filename of a `.h5ad` file.

        - Setting the filename writes the stored data to disk.
        - Setting the filename when the filename was previously another name
          moves the backing file from the previous file to the new file.
          If you want to copy the previous file, use `copy(filename='new_filename')`.
        """
        return self.file.filename

    @filename.setter
    def filename(self, filename: Optional[PathLike]):
        # convert early for later comparison
        filename = None if filename is None else Path(filename)
        # change from backing-mode back to full loading into memory
        if filename is None:
            if self.filename is not None:
                self.file._to_memory_mode()
            else:
                # both filename and self.filename are None
                # do nothing
                return
        else:
            if self.filename is not None:
                if self.filename != filename:
                    # write the content of self to the old file
                    # and close the file
                    self.write()
                    self.filename.rename(filename)
                else:
                    # do nothing
                    return
            else:
                # change from memory to backing-mode
                # write the content of self to disk
                self.write(filename, force_dense=True)
            # open new file for accessing
            self.file.open(filename, "r+")
            # as the data is stored on disk, we can safely set self._X to None
            self._X = None

    def _set_backed(self, attr, value):
        from .._io.utils import write_attribute

        write_attribute(self.file._file, attr, value)

    def _normalize_indices(self, index: Optional[Index]) -> Tuple[slice, slice]:
        return _normalize_indices(index, self.obs_names, self.var_names)

    # TODO: this is not quite complete...
    def __delitem__(self, index: Index):
        obs, var = self._normalize_indices(index)
        # TODO: does this really work?
        if not self.isbacked:
            del self._X[obs, var]
        else:
            X = self.file["X"]
            del X[obs, var]
            self._set_backed("X", X)
        if var == slice(None):
            del self._obs.iloc[obs, :]
        if obs == slice(None):
            del self._var.iloc[var, :]

    def __getitem__(self, index: Index) -> "AnnData":
        """Returns a sliced view of the object."""
        oidx, vidx = self._normalize_indices(index)
        return AnnData(self, oidx=oidx, vidx=vidx, asview=True)

    def _remove_unused_categories(self, df_full, df_sub, uns):
        for k in df_full:
            if not is_categorical_dtype(df_full[k]):
                continue
            all_categories = df_full[k].cat.categories
            df_sub[k].cat.remove_unused_categories(inplace=True)
            # also correct the colors...
            color_key = f"{k}_colors"
            if color_key not in uns:
                continue
            color_vec = uns[color_key]
            if np.array(color_vec).ndim == 0:
                # Make 0D arrays into 1D ones
                uns[color_key] = np.array(color_vec)[(None,)]
            elif len(color_vec) != len(all_categories):
                # Reset colors
                del uns[color_key]
            else:
                idx = np.where(np.in1d(all_categories, df_sub[k].cat.categories))[0]
                uns[color_key] = np.array(color_vec)[(idx,)]

    def rename_categories(self, key: str, categories: Sequence[Any]):
        """\
        Rename categories of annotation `key` in :attr:`obs`, :attr:`var`,
        and :attr:`uns`.

        Only supports passing a list/array-like `categories` argument.

        Besides calling `self.obs[key].cat.categories = categories` –
        similar for :attr:`var` - this also renames categories in unstructured
        annotation that uses the categorical annotation `key`.

        Parameters
        ----------
        key
             Key for observations or variables annotation.
        categories
             New categories, the same number as the old categories.
        """
        if isinstance(categories, Mapping):
            raise ValueError("Only list-like `categories` is supported.")
        if key in self.obs:
            old_categories = self.obs[key].cat.categories.tolist()
            self.obs[key].cat.rename_categories(categories, inplace=True)
        elif key in self.var:
            old_categories = self.var[key].cat.categories.tolist()
            self.var[key].cat.rename_categories(categories, inplace=True)
        else:
            raise ValueError(f"{key} is neither in `.obs` nor in `.var`.")
        # this is not a good solution
        # but depends on the scanpy conventions for storing the categorical key
        # as `groupby` in the `params` slot
        for k1, v1 in self.uns.items():
            if not (
                isinstance(v1, Mapping)
                and "params" in v1
                and "groupby" in v1["params"]
                and v1["params"]["groupby"] == key
            ):
                continue
            for k2, v2 in v1.items():
                # picks out the recarrays that are named according to the old
                # categories
                if isinstance(v2, np.ndarray) and v2.dtype.names is not None:
                    if list(v2.dtype.names) == old_categories:
                        self.uns[k1][k2].dtype.names = categories
                    else:
                        logger.warning(
                            f"Omitting {k1}/{k2} as old categories do not match."
                        )

    def strings_to_categoricals(self, df: Optional[pd.DataFrame] = None):
        """\
        Transform string annotations to categoricals.

        Only affects string annotations that lead to less categories than the
        total number of observations.

        Params
        ------
        df
            If `df` is `None`, modifies both :attr:`obs` and :attr:`var`,
            otherwise modifies `df` inplace.

        Notes
        -----
        Turns the view of an :class:`~anndata.AnnData` into an actual
        :class:`~anndata.AnnData`.
        """
        dont_modify = False  # only necessary for backed views
        if df is None:
            dfs = [self.obs, self.var]
            if self.is_view and self.isbacked:
                dont_modify = True
        else:
            dfs = [df]
        for df in dfs:
            string_cols = [
                key
                for key in df.columns
                if is_string_dtype(df[key]) and not is_categorical_dtype(df[key])
            ]
            for key in string_cols:
                # make sure we only have strings
                # (could be that there are np.nans (float), -666, "-666", for instance)
                c = df[key].astype("U")
                # make a categorical
                c = pd.Categorical(c, categories=natsorted(np.unique(c)))
                if len(c.categories) >= len(c):
                    continue
                if dont_modify:
                    raise RuntimeError(
                        "Please call `.strings_to_categoricals()` on full "
                        "AnnData, not on this view. You might encounter this"
                        "error message while copying or writing to disk."
                    )
                if self.is_view:
                    warnings.warn(
                        "Initializing view as actual.", ImplicitModificationWarning
                    )
                # If `self` is a view, it will be actualized in the next line,
                # therefore the previous warning
                df[key] = c
                logger.info(f"... storing {key!r} as categorical")

    _sanitize = strings_to_categoricals  # backwards compat

    def _inplace_subset_var(self, index: Index1D):
        """\
        Inplace subsetting along variables dimension.

        Same as `adata = adata[:, index]`, but inplace.
        """
        adata_subset = self[:, index].copy()
        self._init_as_actual(adata_subset, dtype=self._X.dtype)

    def _inplace_subset_obs(self, index: Index1D):
        """\
        Inplace subsetting along variables dimension.

        Same as `adata = adata[index, :]`, but inplace.
        """
        adata_subset = self[index].copy()
        self._init_as_actual(adata_subset, dtype=self.X.dtype)

    # TODO: Update, possibly remove
    def __setitem__(
        self, index: Index, val: Union[int, float, np.ndarray, sparse.spmatrix]
    ):
        if self.is_view:
            raise ValueError("Object is view and cannot be accessed with `[]`.")
        obs, var = self._normalize_indices(index)
        if not self.isbacked:
            self._X[obs, var] = val
        else:
            X = self.file["X"]
            X[obs, var] = val
            self._set_backed("X", X)

    def __len__(self) -> int:
        return self.shape[0]

    def transpose(self) -> "AnnData":
        """\
        Transpose whole object.

        Data matrix is transposed, observations and variables are interchanged.

        Ignores `.raw`.
        """
        if not self.isbacked:
            X = self.X
        else:
            X = self.file["X"]
        if self.is_view:
            raise ValueError(
                "You’re trying to transpose a view of an `AnnData`, "
                "which is currently not implemented. Call `.copy()` before transposing."
            )

        def t_csr(m: sparse.spmatrix) -> sparse.csr_matrix:
            return m.T.tocsr() if sparse.isspmatrix_csr(m) else m.T

        return AnnData(
            t_csr(X),
            obs=self.var,
            var=self.obs,
            # we're taking a private attributes here to be able to modify uns of the original object
            uns=self._uns,
            obsm=self.varm.flipped(),
            varm=self.obsm.flipped(),
            obsp=self.varp.copy(),
            varp=self.obsp.copy(),
            filename=self.filename,
            layers={k: t_csr(v) for k, v in self.layers.items()},
            dtype=self.X.dtype.name,
        )

    T = property(transpose)

    def to_df(self, layer=None) -> pd.DataFrame:
        """\
        Generate shallow :class:`~pandas.DataFrame`.

        The data matrix :attr:`X` is returned as
        :class:`~pandas.DataFrame`, where :attr:`obs_names` initializes the
        index, and :attr:`var_names` the columns.

        * No annotations are maintained in the returned object.
        * The data matrix is densified in case it is sparse.

        Params
        ------
        layer : str
            Key for `.layers`.
        """
        if layer is not None:
            X = self.layers[layer]
        else:
            X = self.X
        if issparse(X):
            X = X.toarray()
        return pd.DataFrame(X, index=self.obs_names, columns=self.var_names)

    def _get_X(self, use_raw=False, layer=None):
        """\
        Convenience method for getting expression values
        with common arguments and error handling.
        """
        is_layer = layer is not None
        if use_raw and is_layer:
            raise ValueError(
                "Cannot use expression from both layer and raw. You provided:"
                f"`use_raw={use_raw}` and `layer={layer}`"
            )
        if is_layer:
            return self.layers[layer]
        elif use_raw:
            if self.raw is None:
                raise ValueError("This AnnData doesn’t have a value in `.raw`.")
            return self.raw.X
        else:
            return self.X

    def obs_vector(self, k: str, *, layer: Optional[str] = None) -> np.ndarray:
        """\
        Convenience function for returning a 1 dimensional ndarray of values
        from :attr:`X`, :attr:`layers`\\ `[k]`, or :attr:`obs`.

        Made for convenience, not performance.
        Intentionally permissive about arguments, for easy iterative use.

        Params
        ------
        k
            Key to use. Should be in :attr:`var_names` or :attr:`obs`\\ `.columns`.
        layer
            What layer values should be returned from. If `None`, :attr:`X` is used.

        Returns
        -------
        A one dimensional nd array, with values for each obs in the same order
        as :attr:`obs_names`.
        """
        if layer == "X":
            if "X" in self.layers:
                pass
            else:
                warnings.warn(
                    "In a future version of AnnData, access to `.X` by passing"
                    " `layer='X'` will be removed. Instead pass `layer=None`.",
                    FutureWarning,
                )
                layer = None
        return get_vector(self, k, "obs", "var", layer=layer)

    def var_vector(self, k, *, layer: Optional[str] = None) -> np.ndarray:
        """\
        Convenience function for returning a 1 dimensional ndarray of values
        from :attr:`X`, :attr:`layers`\\ `[k]`, or :attr:`obs`.

        Made for convenience, not performance. Intentionally permissive about
        arguments, for easy iterative use.

        Params
        ------
        k
            Key to use. Should be in :attr:`obs_names` or :attr:`var`\\ `.columns`.
        layer
            What layer values should be returned from. If `None`, :attr:`X` is used.

        Returns
        -------
        A one dimensional nd array, with values for each var in the same order
        as :attr:`var_names`.
        """
        if layer == "X":
            if "X" in self.layers:
                pass
            else:
                warnings.warn(
                    "In a future version of AnnData, access to `.X` by passing "
                    "`layer='X'` will be removed. Instead pass `layer=None`.",
                    FutureWarning,
                )
                layer = None
        return get_vector(self, k, "var", "obs", layer=layer)

    @utils.deprecated("obs_vector")
    def _get_obs_array(self, k, use_raw=False, layer=None):
        """\
        Get an array from the layer (default layer='X') along the :attr:`obs`
        dimension by first looking up `obs.keys` and then :attr:`obs_names`.
        """
        if not use_raw or k in self.obs.columns:
            return self.obs_vector(k=k, layer=layer)
        else:
            return self.raw.obs_vector(k)

    @utils.deprecated("var_vector")
    def _get_var_array(self, k, use_raw=False, layer=None):
        """\
        Get an array from the layer (default layer='X') along the :attr:`var`
        dimension by first looking up `var.keys` and then :attr:`var_names`.
        """
        if not use_raw or k in self.var.columns:
            return self.var_vector(k=k, layer=layer)
        else:
            return self.raw.var_vector(k)

    def copy(self, filename: Optional[PathLike] = None) -> "AnnData":
        """Full copy, optionally on disk."""
        if not self.isbacked:
            if self.is_view:
                # TODO: How do I unambiguously check if this is a copy?
                # Subsetting this way means we don’t have to have a view type
                # defined for the matrix, which is needed for some of the
                # current distributed backend.
                X = _subset(self._adata_ref.X, (self._oidx, self._vidx)).copy()
            else:
                X = self.X.copy()
            # TODO: Figure out what case this is:
            if X is not None:
                dtype = X.dtype
                if X.shape != self.shape:
                    X = X.reshape(self.shape)
            else:
                dtype = "float32"
            return AnnData(
                X=X,
                obs=self.obs.copy(),
                var=self.var.copy(),
                # deepcopy on DictView does not work and is unnecessary
                # as uns was copied already before
                uns=self._uns.copy()
                if isinstance(self.uns, DictView)
                else deepcopy(self._uns),
                obsm=self.obsm.copy(),
                varm=self.varm.copy(),
                obsp=self.obsp.copy(),
                varp=self.varp.copy(),
                raw=self.raw.copy() if self.raw is not None else None,
                layers=self.layers.copy(),
                dtype=dtype,
            )
        else:
            from .._io import read_h5ad

            if filename is None:
                raise ValueError(
                    "To copy an AnnData object in backed mode, "
                    "pass a filename: `.copy(filename='myfilename.h5ad')`."
                )
            mode = self.file._filemode
            self.write(filename)
            return read_h5ad(filename, backed=mode)

    def concatenate(
        self,
        *adatas: "AnnData",
        join: str = "inner",
        batch_key: str = "batch",
        batch_categories: Sequence[Any] = None,
        uns_merge: Optional[str] = None,
        index_unique: Optional[str] = "-",
        fill_value=None,
    ) -> "AnnData":
        """\
        Concatenate along the observations axis.

        The :attr:`uns`, :attr:`varm` and :attr:`obsm` attributes are ignored.

        Currently, this works only in `'memory'` mode.

        Parameters
        ----------
        adatas
            AnnData matrices to concatenate with. Each matrix is referred to as
            a “batch”.
        join
            Use intersection (`'inner'`) or union (`'outer'`) of variables.
        batch_key
            Add the batch annotation to :attr:`obs` using this key.
        batch_categories
            Use these as categories for the batch annotation. By default, use increasing numbers.
        uns_merge
            Strategy to use for merging entries of uns. These strategies are applied recusivley.
            Currently implemented strategies include:

            * `None`: The default. The concatenated object will just have an empty dict for `uns`.
            * `"same"`: Only entries which have the same value in all AnnData objects are kept.
            * `"unique"`: Only entries which have one unique value in all AnnData objects are kept.
            * `"first"`: The first non-missing value is used.
            * `"only"`: A value is included if only one of the AnnData objects has a value at this
              path.
        index_unique
            Make the index unique by joining the existing index names with the
            batch category, using `index_unique='-'`, for instance. Provide
            `None` to keep existing indices.
        fill_value
            Scalar value to fill newly missing values in arrays with. Note: only applies to arrays
            and sparse matrices (not dataframes) and will only be used if `join="outer"`.

            .. note::
                If not provided, the default value is `0` for sparse matrices and `np.nan`
                for numpy arrays. See the examples below for more information.

        Returns
        -------
        :class:`~anndata.AnnData`
            The concatenated :class:`~anndata.AnnData`, where `adata.obs[batch_key]`
            stores a categorical variable labeling the batch.

        Notes
        -----

        .. warning::

           If you use `join='outer'` this fills 0s for sparse data when
           variables are absent in a batch. Use this with care. Dense data is
           filled with `NaN`. See the examples.

        Examples
        --------
        Joining on intersection of variables.

        >>> adata1 = AnnData(
        ...     np.array([[1, 2, 3], [4, 5, 6]]),
        ...     dict(obs_names=['s1', 's2'], anno1=['c1', 'c2']),
        ...     dict(var_names=['a', 'b', 'c'], annoA=[0, 1, 2]),
        ... )
        >>> adata2 = AnnData(
        ...     np.array([[1, 2, 3], [4, 5, 6]]),
        ...     dict(obs_names=['s3', 's4'], anno1=['c3', 'c4']),
        ...     dict(var_names=['d', 'c', 'b'], annoA=[0, 1, 2]),
        ... )
        >>> adata3 = AnnData(
        ... np.array([[1, 2, 3], [4, 5, 6]]),
        ...     dict(obs_names=['s1', 's2'], anno2=['d3', 'd4']),
        ...     dict(var_names=['d', 'c', 'b'], annoA=[0, 2, 3], annoB=[0, 1, 2]),
        ... )
        >>> adata = adata1.concatenate(adata2, adata3)
        >>> adata
        AnnData object with n_obs × n_vars = 6 × 2
            obs: 'anno1', 'anno2', 'batch'
            var: 'annoA-0', 'annoA-1', 'annoA-2', 'annoB-2'
        >>> adata.X
        array([[2., 3.],
               [5., 6.],
               [3., 2.],
               [6., 5.],
               [3., 2.],
               [6., 5.]], dtype=float32)
        >>> adata.obs
             anno1 anno2 batch
        s1-0    c1   NaN     0
        s2-0    c2   NaN     0
        s3-1    c3   NaN     1
        s4-1    c4   NaN     1
        s1-2   NaN    d3     2
        s2-2   NaN    d4     2
        >>> adata.var.T
                 b  c
        annoA-0  1  2
        annoA-1  2  1
        annoA-2  3  2
        annoB-2  2  1

        Joining on the union of variables.

        >>> outer = adata1.concatenate(adata2, adata3, join='outer')
        >>> outer
        AnnData object with n_obs × n_vars = 6 × 4
            obs: 'anno1', 'anno2', 'batch'
            var: 'annoA-0', 'annoA-1', 'annoA-2', 'annoB-2'
        >>> outer.var.T
                   a    b    c    d
        annoA-0  0.0  1.0  2.0  NaN
        annoA-1  NaN  2.0  1.0  0.0
        annoA-2  NaN  3.0  2.0  0.0
        annoB-2  NaN  2.0  1.0  0.0
        >>> outer.var_names
        Index(['a', 'b', 'c', 'd'], dtype='object')
        >>> outer.X
        array([[ 1.,  2.,  3., nan],
               [ 4.,  5.,  6., nan],
               [nan,  3.,  2.,  1.],
               [nan,  6.,  5.,  4.],
               [nan,  3.,  2.,  1.],
               [nan,  6.,  5.,  4.]], dtype=float32)
        >>> outer.X.sum(axis=0)
        array([nan, 25., 23., nan], dtype=float32)
        >>> import pandas as pd
        >>> Xdf = pd.DataFrame(outer.X, columns=outer.var_names)
        >>> Xdf
             a    b    c    d
        0  1.0  2.0  3.0  NaN
        1  4.0  5.0  6.0  NaN
        2  NaN  3.0  2.0  1.0
        3  NaN  6.0  5.0  4.0
        4  NaN  3.0  2.0  1.0
        5  NaN  6.0  5.0  4.0
        >>> Xdf.sum()
        a     5.0
        b    25.0
        c    23.0
        d    10.0
        dtype: float32

        One way to deal with missing values is to use masked arrays:

        >>> from numpy import ma
        >>> outer.X = ma.masked_invalid(outer.X)
        >>> outer.X
        masked_array(
          data=[[1.0, 2.0, 3.0, --],
                [4.0, 5.0, 6.0, --],
                [--, 3.0, 2.0, 1.0],
                [--, 6.0, 5.0, 4.0],
                [--, 3.0, 2.0, 1.0],
                [--, 6.0, 5.0, 4.0]],
          mask=[[False, False, False,  True],
                [False, False, False,  True],
                [ True, False, False, False],
                [ True, False, False, False],
                [ True, False, False, False],
                [ True, False, False, False]],
          fill_value=1e+20,
          dtype=float32)
        >>> outer.X.sum(axis=0).data
        array([ 5., 25., 23., 10.], dtype=float32)

        The masked array is not saved but has to be reinstantiated after saving.

        >>> outer.write('./test.h5ad')
        >>> from anndata import read_h5ad
        >>> outer = read_h5ad('./test.h5ad')
        >>> outer.X
        array([[ 1.,  2.,  3., nan],
               [ 4.,  5.,  6., nan],
               [nan,  3.,  2.,  1.],
               [nan,  6.,  5.,  4.],
               [nan,  3.,  2.,  1.],
               [nan,  6.,  5.,  4.]], dtype=float32)

        For sparse data, everything behaves similarly,
        except that for `join='outer'`, zeros are added.

        >>> from scipy.sparse import csr_matrix
        >>> adata1 = AnnData(
        ...     csr_matrix([[0, 2, 3], [0, 5, 6]]),
        ...     dict(obs_names=['s1', 's2'], anno1=['c1', 'c2']),
        ...     dict(var_names=['a', 'b', 'c']),
        ... )
        >>> adata2 = AnnData(
        ... csr_matrix([[0, 2, 3], [0, 5, 6]]),
        ...     dict(obs_names=['s3', 's4'], anno1=['c3', 'c4']),
        ...     dict(var_names=['d', 'c', 'b']),
        ... )
        >>> adata3 = AnnData(
        ... csr_matrix([[1, 2, 0], [0, 5, 6]]),
        ...     dict(obs_names=['s5', 's6'], anno2=['d3', 'd4']),
        ...     dict(var_names=['d', 'c', 'b']),
        ... )
        >>> adata = adata1.concatenate(adata2, adata3, join='outer')
        >>> adata.var_names
        Index(['a', 'b', 'c', 'd'], dtype='object')
        >>> adata.X.toarray()
        array([[0., 2., 3., 0.],
               [0., 5., 6., 0.],
               [0., 3., 2., 0.],
               [0., 6., 5., 0.],
               [0., 0., 2., 1.],
               [0., 6., 5., 0.]], dtype=float32)
        """
        from .merge import concat, merge_outer, merge_dataframes, merge_same

        if self.isbacked:
            raise ValueError("Currently, concatenate does only work in memory mode.")

        if len(adatas) == 0:
            return self.copy()
        elif len(adatas) == 1 and not isinstance(adatas[0], AnnData):
            adatas = adatas[0]  # backwards compatibility
        all_adatas = (self,) + tuple(adatas)

        out = concat(
            all_adatas,
            axis=0,
            join=join,
            label=batch_key,
            keys=batch_categories,
            uns_merge=uns_merge,
            fill_value=fill_value,
            index_unique=index_unique,
            pairwise=False,
        )

        ### Backwards compat (some of this could be more efficient)
        # obs used to always be an outer join
        out.obs = concat(
            [AnnData(sparse.csr_matrix(a.shape), obs=a.obs) for a in all_adatas],
            axis=0,
            join="outer",
            label=batch_key,
            keys=batch_categories,
            index_unique=index_unique,
        ).obs
        # Removing varm
        del out.varm
        # Implementing old-style merging of var
        if batch_categories is None:
            batch_categories = np.arange(len(all_adatas)).astype(str)
        pat = rf"-({'|'.join(batch_categories)})$"
        out.var = merge_dataframes(
            [a.var for a in all_adatas],
            out.var_names,
            partial(merge_outer, batch_keys=batch_categories, merge=merge_same),
        )
        out.var = out.var.iloc[
            :,
            (
                out.var.columns.str.extract(pat, expand=False)
                .fillna("")
                .argsort(kind="stable")
            ),
        ]

        return out

    def var_names_make_unique(self, join: str = "-"):
        # Important to go through the setter so obsm dataframes are updated too
        self.var_names = utils.make_index_unique(self.var.index, join)

    var_names_make_unique.__doc__ = utils.make_index_unique.__doc__

    def obs_names_make_unique(self, join: str = "-"):
        # Important to go through the setter so obsm dataframes are updated too
        self.obs_names = utils.make_index_unique(self.obs.index, join)

    obs_names_make_unique.__doc__ = utils.make_index_unique.__doc__

    def _check_uniqueness(self):
        if not self.obs.index.is_unique:
            utils.warn_names_duplicates("obs")
        if not self.var.index.is_unique:
            utils.warn_names_duplicates("var")

    def __contains__(self, key: Any):
        raise AttributeError(
            "AnnData has no attribute __contains__, don’t check `in adata`."
        )

    def _check_dimensions(self, key=None):
        if key is None:
            key = {"obs", "var", "obsm", "varm"}
        else:
            key = {key}
        if "obs" in key and len(self._obs) != self._n_obs:
            raise ValueError(
                "Observations annot. `obs` must have number of rows of `X`"
                f" ({self._n_obs}), but has {self._obs.shape[0]} rows."
            )
        if "var" in key and len(self._var) != self._n_vars:
            raise ValueError(
                "Variables annot. `var` must have number of columns of `X`"
                f" ({self._n_vars}), but has {self._var.shape[0]} rows."
            )
        if "obsm" in key:
            obsm = self._obsm
            if (
                not all([o.shape[0] == self._n_obs for o in obsm.values()])
                and len(obsm.dim_names) != self._n_obs
            ):
                raise ValueError(
                    "Observations annot. `obsm` must have number of rows of `X`"
                    f" ({self._n_obs}), but has {len(obsm)} rows."
                )
        if "varm" in key:
            varm = self._varm
            if (
                not all([v.shape[0] == self._n_vars for v in varm.values()])
                and len(varm.dim_names) != self._n_vars
            ):
                raise ValueError(
                    "Variables annot. `varm` must have number of columns of `X`"
                    f" ({self._n_vars}), but has {len(varm)} rows."
                )

    def write_h5ad(
        self,
        filename: Optional[PathLike] = None,
        compression: Optional[Literal["gzip", "lzf"]] = None,
        compression_opts: Union[int, Any] = None,
        force_dense: Optional[bool] = None,
        as_dense: Sequence[str] = (),
    ):
        """\
        Write `.h5ad`-formatted hdf5 file.

        .. note::
           Setting compression to `'gzip'` can save disk space
           but will slow down writing and subsequent reading.
           Prior to v0.6.16, this was the default for parameter `compression`.

        Generally, if you have sparse data that are stored as a dense matrix,
        you can dramatically improve performance and reduce disk space
        by converting to a :class:`~scipy.sparse.csr_matrix`::

            from scipy.sparse import csr_matrix
            adata.X = csr_matrix(adata.X)

        Parameters
        ----------
        filename
            Filename of data file. Defaults to backing file.
        compression
            See the h5py :ref:`dataset_compression`.
        compression_opts
            See the h5py :ref:`dataset_compression`.
        as_dense
            Sparse arrays in AnnData object to write as dense. Currently only
            supports `X` and `raw/X`.
        force_dense
            Write sparse data as a dense matrix.
            Defaults to `True` if object is backed, otherwise to `False`.
        """
        from .._io.write import _write_h5ad

        if filename is None and not self.isbacked:
            raise ValueError("Provide a filename!")
        if filename is None:
            filename = self.filename

        _write_h5ad(
            Path(filename),
            self,
            compression=compression,
            compression_opts=compression_opts,
            force_dense=force_dense,
            as_dense=as_dense,
        )

        if self.isbacked:
            self.file.close()

    write = write_h5ad  # a shortcut and backwards compat

    def write_csvs(self, dirname: PathLike, skip_data: bool = True, sep: str = ","):
        """\
        Write annotation to `.csv` files.

        It is not possible to recover the full :class:`~anndata.AnnData` from
        these files. Use :meth:`write` for this.

        Parameters
        ----------
        dirname
            Name of directory to which to export.
        skip_data
             Skip the data matrix :attr:`X`.
        sep
             Separator for the data.
        """
        from .._io.write import write_csvs

        write_csvs(dirname, self, skip_data=skip_data, sep=sep)

    def write_loom(self, filename: PathLike, write_obsm_varm: bool = False):
        """\
        Write `.loom`-formatted hdf5 file.

        Parameters
        ----------
        filename
            The filename.
        """
        from .._io.write import write_loom

        write_loom(filename, self, write_obsm_varm=write_obsm_varm)

    def write_zarr(
        self,
        store: Union[MutableMapping, PathLike],
        chunks: Union[bool, int, Tuple[int, ...], None] = None,
    ):
        """\
        Write a hierarchical Zarr array store.

        Parameters
        ----------
        store
            The filename, a :class:`~typing.MutableMapping`, or a Zarr storage class.
        chunks
            Chunk shape.
        """
        from .._io.write import write_zarr

        write_zarr(store, self, chunks=chunks)

    def chunked_X(self, chunk_size: Optional[int] = None):
        """\
        Return an iterator over the rows of the data matrix :attr:`X`.

        Parameters
        ----------
        chunk_size
            Row size of a single chunk.
        """
        if chunk_size is None:
            # Should be some adaptive code
            chunk_size = 6000
        start = 0
        n = self.n_obs
        for _ in range(int(n // chunk_size)):
            end = start + chunk_size
            yield (self.X[start:end], start, end)
            start = end
        if start < n:
            yield (self.X[start:n], start, n)

    def chunk_X(
        self,
        select: Union[int, Sequence[int], np.ndarray] = 1000,
        replace: bool = True,
    ):
        """\
        Return a chunk of the data matrix :attr:`X` with random or specified indices.

        Parameters
        ----------
        select
            Depending on the type:

            :class:`int`
                A random chunk with `select` rows will be returned.
            :term:`sequence` (e.g. a list, tuple or numpy array) of :class:`int`
                A chunk with these indices will be returned.

        replace
            If `select` is an integer then `True` means random sampling of
            indices with replacement, `False` without replacement.
        """
        if isinstance(select, int):
            select = select if select < self.n_obs else self.n_obs
            choice = np.random.choice(self.n_obs, select, replace)
        elif isinstance(select, (np.ndarray, cabc.Sequence)):
            choice = np.asarray(select)
        else:
            raise ValueError("select should be int or array")

        reverse = None
        if self.isbacked:
            # h5py can only slice with a sorted list of unique index values
            # so random batch with indices [2, 2, 5, 3, 8, 10, 8] will fail
            # this fixes the problem
            indices, reverse = np.unique(choice, return_inverse=True)
            selection = self.X[indices.tolist()]
        else:
            selection = self.X[choice]

        selection = selection.toarray() if issparse(selection) else selection
        return selection if reverse is None else selection[reverse]

    # --------------------------------------------------------------------------
    # all of the following is for backwards compat
    # --------------------------------------------------------------------------

    @property
    @utils.deprecated("is_view")
    def isview(self):
        return self.is_view

    def _clean_up_old_format(self, uns):
        # multicolumn keys
        # all of the rest is only for backwards compat
        for bases in [["obs", "smp"], ["var"]]:
            axis = bases[0]
            for k in [f"{p}{base}_keys_multicol" for p in ["", "_"] for base in bases]:
                if uns and k in uns:
                    keys = list(uns[k])
                    del uns[k]
                    break
            else:
                keys = []
            # now, for compat, fill the old multicolumn entries into obsm and varm
            # and remove them from obs and var
            m_attr = getattr(self, f"_{axis}m")
            for key in keys:
                m_attr[key] = self._get_and_delete_multicol_field(axis, key)

    def _get_and_delete_multicol_field(self, a, key_multicol):
        keys = []
        for k in getattr(self, a).columns:
            if k.startswith(key_multicol):
                keys.append(k)
        values = getattr(self, a)[keys].values
        getattr(self, a).drop(keys, axis=1, inplace=True)
        return values