File: merge.py

package info (click to toggle)
python-anndata 0.7.5%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 628 kB
  • sloc: python: 7,779; makefile: 8
file content (909 lines) | stat: -rw-r--r-- 28,604 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
"""
Code for merging/ concatenating AnnData objects.
"""
from collections import OrderedDict
from collections.abc import Mapping, MutableSet
from functools import reduce, singledispatch
from itertools import repeat
from operator import and_, or_, sub
from typing import Any, Callable, Collection, Iterable, Optional, Tuple, TypeVar, Union
import typing
from warnings import warn

import numpy as np
import pandas as pd
from scipy import sparse

from .anndata import AnnData
from ..compat import Literal
from ..utils import asarray

T = TypeVar("T")

###################
# Utilities
###################


# Pretty much just for maintaining order of keys
class OrderedSet(MutableSet):
    def __init__(self, vals=()):
        self.dict = OrderedDict(zip(vals, repeat(None)))

    def __contains__(self, val):
        return val in self.dict

    def __iter__(self):
        return iter(self.dict)

    def __len__(self):
        return len(self.dict)

    def __repr__(self):
        return "OrderedSet: {" + ", ".join(map(str, self)) + "}"

    def copy(self):
        return OrderedSet(self.dict.copy())

    def add(self, val):
        self.dict[val] = None

    def union(self, *vals):
        return reduce(or_, vals, self)

    def discard(self, val):
        if val in self:
            del self.dict[val]

    def difference(self, *vals):
        return reduce(sub, vals, self)


def union_keys(ds: Collection) -> OrderedSet:
    return reduce(or_, ds, OrderedSet())


def intersect_keys(ds: Collection) -> OrderedSet:
    return reduce(and_, map(OrderedSet, ds))


class MissingVal:
    """Represents a missing value."""


def is_missing(v) -> bool:
    return v is MissingVal


def not_missing(v) -> bool:
    return v is not MissingVal


# We need to be able to check for equality of arrays to know which are the same.
# Unfortunatley equality of arrays is poorly defined.
# * `np.array_equal` does not work for sparse arrays
# * `np.array_equal(..., equal_nan=True)` does not work for null values at the moment
#   (see https://github.com/numpy/numpy/issues/16377)
# So we have to define it ourselves with these two issues in mind.
# TODO: Hopefully this will stop being an issue in the future and this code can be removed.
@singledispatch
def equal(a, b) -> bool:
    return np.array_equal(a, asarray(b))


@equal.register(pd.DataFrame)
def equal_dataframe(a, b) -> bool:
    return a.equals(b)


@equal.register(np.ndarray)
def equal_array(a, b) -> bool:
    return equal(pd.DataFrame(a), pd.DataFrame(asarray(b)))


@equal.register(sparse.spmatrix)
def equal_sparse(a, b) -> bool:
    # It's a weird api, don't blame me
    if isinstance(b, sparse.spmatrix):
        comp = a != b
        if isinstance(comp, bool):
            return not comp
        # fmt: off
        return (
            (len(comp.data) == 0)
            or (
                np.isnan(a[comp]).all()
                and np.isnan(b[comp]).all()
            )
        )
        # fmt: on
    else:
        return False


def as_sparse(x):
    if not isinstance(x, sparse.spmatrix):
        return sparse.csr_matrix(x)
    else:
        return x


###################
# Per element logic
###################


def unique_value(vals: Collection[T]) -> Union[T, MissingVal]:
    """
    Given a collection vals, returns the unique value (if one exists), otherwise
    returns MissingValue.
    """
    unique_val = vals[0]
    for v in vals[1:]:
        if not equal(v, unique_val):
            return MissingVal
    return unique_val


def first(vals: Collection[T]) -> Union[T, MissingVal]:
    """
    Given a collection of vals, return the first non-missing one.If they're all missing,
    return MissingVal.
    """
    for val in vals:
        if not_missing(val):
            return val
    return MissingVal


def only(vals: Collection[T]) -> Union[T, MissingVal]:
    """Return the only value in the collection, otherwise MissingVal."""
    if len(vals) == 1:
        return vals[0]
    else:
        return MissingVal


###################
# Merging
###################


def merge_nested(ds: Collection[Mapping], keys_join: Callable, value_join: Callable):
    out = {}
    for k in keys_join(ds):
        v = _merge_nested(ds, k, keys_join, value_join)
        if not_missing(v):
            out[k] = v
    return out


def _merge_nested(
    ds: Collection[Mapping], k, keys_join: Callable, value_join: Callable
):
    vals = [d[k] for d in ds if k in d]
    if len(vals) == 0:
        return MissingVal
    elif all(isinstance(v, Mapping) for v in vals):
        new_map = merge_nested(vals, keys_join, value_join)
        if len(new_map) == 0:
            return MissingVal
        else:
            return new_map
    else:
        return value_join(vals)


def merge_unique(ds: Collection[Mapping]) -> Mapping:
    return merge_nested(ds, union_keys, unique_value)


def merge_same(ds: Collection[Mapping]) -> Mapping:
    return merge_nested(ds, intersect_keys, unique_value)


def merge_first(ds: Collection[Mapping]) -> Mapping:
    return merge_nested(ds, union_keys, first)


def merge_only(ds: Collection[Mapping]) -> Mapping:
    return merge_nested(ds, union_keys, only)


###################
# Interface
###################

# Leaving out for now, it's ugly in the rendered docs and would be adding a dependency.
# from typing_extensions import Literal
# UNS_STRATEGIES_TYPE = Literal[None, "same", "unique", "first", "only"]
MERGE_STRATEGIES = {
    None: lambda x: {},
    "same": merge_same,
    "unique": merge_unique,
    "first": merge_first,
    "only": merge_only,
}

StrategiesLiteral = Literal["same", "unique", "first", "only"]


def resolve_merge_strategy(
    strategy: Union[str, Callable, None]
) -> Callable[[Collection[Mapping]], Mapping]:
    if not isinstance(strategy, Callable):
        strategy = MERGE_STRATEGIES[strategy]
    return strategy


#####################
# Concatenation
#####################


class Reindexer(object):
    """
    Indexing to be applied to axis of 2d array orthogonal to the axis being concatenated.

    Attrs
    -----
    old_idx
        Original index
    new_idx
        Target index
    old_pos
        Indices of original index which will be kept
    new_pos
        Indices of new index which data from old_pos will be placed in.
        Together with `old_pos` this forms a mapping.
    """

    def __init__(self, old_idx, new_idx):
        self.old_idx = old_idx
        self.new_idx = new_idx

        self.no_change = new_idx.equals(old_idx)

        new_pos = new_idx.get_indexer(old_idx)
        old_pos = np.arange(len(new_pos))

        mask = new_pos != -1

        self.new_pos = new_pos[mask]
        self.old_pos = old_pos[mask]

    def __call__(self, el, *, axis=1, fill_value=None):
        return self.apply(el, axis=axis, fill_value=fill_value)

    def apply(self, el, *, axis, fill_value=None):
        if self.no_change and (el.shape[axis] == len(self.old_idx)):
            return el
        if isinstance(el, pd.DataFrame):
            return self._apply_to_df(el, axis=axis, fill_value=fill_value)
        elif isinstance(el, sparse.spmatrix):
            return self._apply_to_sparse(el, axis=axis, fill_value=fill_value)
        else:
            return self._apply_to_array(el, axis=axis, fill_value=fill_value)

    def _apply_to_df(self, el, *, axis, fill_value=None):
        if fill_value is None:
            fill_value = np.NaN
        return el.reindex(self.new_idx, axis=axis, fill_value=fill_value)

    def _apply_to_array(self, el, *, axis, fill_value=None):
        if fill_value is None:
            fill_value = default_fill_value([el])
        if 0 in el.shape:
            return np.broadcast_to(fill_value, (el.shape[0], len(self.new_idx)))

        indexer = self.old_idx.get_indexer(self.new_idx)

        # Indexes real fast, and does outer indexing
        return pd.api.extensions.take(
            el, indexer, axis=axis, allow_fill=True, fill_value=fill_value
        )

    def _apply_to_sparse(self, el, *, axis, fill_value=None):
        if fill_value is None:
            fill_value = default_fill_value([el])
        if fill_value != 0:
            to_fill = self.new_idx.get_indexer(self.new_idx.difference(self.old_idx))
        else:
            to_fill = np.array([])

        # Fixing outer indexing for missing values
        if el.shape[1] == 0:
            if fill_value == 0:
                return sparse.coo_matrix((el.shape[0], len(self.new_idx)))
            else:
                return np.broadcast_to(fill_value, (el.shape[0], len(self.new_idx)))

        fill_idxer = None

        if len(to_fill) > 0:
            idxmtx_dtype = np.promote_types(el.dtype, np.array(fill_value).dtype)
        else:
            idxmtx_dtype = bool

        if axis == 1:
            idxmtx = sparse.coo_matrix(
                (np.ones(len(self.new_pos), dtype=bool), (self.old_pos, self.new_pos)),
                shape=(len(self.old_idx), len(self.new_idx)),
                dtype=idxmtx_dtype,
            )
            out = el @ idxmtx

            if len(to_fill) > 0:
                out = out.tocsc()
                fill_idxer = (slice(None), to_fill)
        elif axis == 0:
            idxmtx = sparse.coo_matrix(
                (np.ones(len(self.new_pos), dtype=bool), (self.new_pos, self.old_pos)),
                shape=(len(self.new_idx), len(self.old_idx)),
                dtype=idxmtx_dtype,
            )
            out = idxmtx @ el

            if len(to_fill) > 0:
                out = out.tocsr()
                fill_idxer = (to_fill, slice(None))

        if fill_idxer is not None:
            out[fill_idxer] = fill_value

        return out


def resolve_index(inds: Iterable[pd.Index], join):
    if join == "inner":
        return reduce(lambda x, y: x.intersection(y), inds)
    elif join == "outer":
        return reduce(lambda x, y: x.union(y), inds)
    else:
        raise ValueError()


def default_fill_value(els):
    """Given some arrays, returns what the default fill value should be.

    This is largely due to backwards compat, and might not be the ideal solution.
    """
    if any(isinstance(el, sparse.spmatrix) for el in els):
        return 0
    else:
        return np.nan


def gen_reindexer(new_var: pd.Index, cur_var: pd.Index):
    """
    Given a new set of var_names, and a current set, generates a function which will reindex
    a matrix to be aligned with the new set.

    Usage
    -----

    >>> a = AnnData(sparse.eye(3), var=pd.DataFrame(index=list("abc")))
    >>> b = AnnData(sparse.eye(2), var=pd.DataFrame(index=list("ba")))
    >>> reindexer = gen_reindexer(a.var_names, b.var_names)
    >>> sparse.vstack([a.X, reindexer(b.X)]).toarray()
    array([[1., 0., 0.],
           [0., 1., 0.],
           [0., 0., 1.],
           [0., 1., 0.],
           [1., 0., 0.]], dtype=float32)
    """
    return Reindexer(cur_var, new_var)


def concat_arrays(arrays, reindexers, axis=0, index=None, fill_value=None):
    arrays = list(arrays)
    if fill_value is None:
        fill_value = default_fill_value(arrays)

    if any(isinstance(a, pd.DataFrame) for a in arrays):
        if not all(isinstance(a, pd.DataFrame) for a in arrays):
            raise NotImplementedError(
                "Cannot concatenate a dataframe with other array types."
            )
        # TODO: behaviour here should be chosen through a merge strategy
        df = pd.concat(
            [f(x) for f, x in zip(reindexers, arrays)], ignore_index=True, axis=axis
        )
        df.index = index
        return df
    elif any(isinstance(a, sparse.spmatrix) for a in arrays):
        sparse_stack = (sparse.vstack, sparse.hstack)[axis]
        return sparse_stack(
            [
                f(as_sparse(a), axis=1 - axis, fill_value=fill_value)
                for f, a in zip(reindexers, arrays)
            ],
            format="csr",
        )
    else:
        return np.concatenate(
            [
                f(x, fill_value=fill_value, axis=1 - axis)
                for f, x in zip(reindexers, arrays)
            ],
            axis=axis,
        )


def inner_concat_aligned_mapping(mappings, reindexers=None, index=None, axis=0):
    result = {}

    for k in intersect_keys(mappings):
        els = [m[k] for m in mappings]
        if reindexers is None:
            cur_reindexers = gen_inner_reindexers(els, new_index=index, axis=axis)
        else:
            cur_reindexers = reindexers

        result[k] = concat_arrays(els, cur_reindexers, index=index, axis=axis)
    return result


def gen_inner_reindexers(els, new_index, axis=0):
    alt_axis = 1 - axis
    if axis == 0:
        df_indices = lambda x: x.columns
    elif axis == 1:
        df_indices = lambda x: x.indices

    if all(isinstance(el, pd.DataFrame) for el in els if not_missing(el)):
        common_ind = reduce(
            lambda x, y: x.intersection(y), (df_indices(el) for el in els)
        )
        reindexers = [Reindexer(df_indices(el), common_ind) for el in els]
    else:
        min_ind = min(el.shape[alt_axis] for el in els)
        reindexers = [
            gen_reindexer(pd.RangeIndex(min_ind), pd.RangeIndex(el.shape[alt_axis]))
            for el in els
        ]
    return reindexers


def gen_outer_reindexers(els, shapes, new_index: pd.Index, *, axis=0):
    if all(isinstance(el, pd.DataFrame) for el in els if not_missing(el)):
        reindexers = [
            lambda x: x if not_missing(el) else pd.DataFrame(index=range(shape))
            for el, shape in zip(els, shapes)
        ]
    else:
        # if fill_value is None:
        # fill_value = default_fill_value(els)

        max_col = max(el.shape[1] for el in els if not_missing(el))
        orig_cols = [el.shape[1] if not_missing(el) else 0 for el in els]
        reindexers = [
            gen_reindexer(pd.RangeIndex(max_col), pd.RangeIndex(n)) for n in orig_cols
        ]
    return reindexers


def outer_concat_aligned_mapping(
    mappings, reindexers=None, index=None, fill_value=None, axis=0
):
    result = {}
    ns = [m.parent.shape[axis] for m in mappings]

    for k in union_keys(mappings):
        els = [m.get(k, MissingVal) for m in mappings]
        if reindexers is None:
            cur_reindexers = gen_outer_reindexers(els, ns, new_index=index, axis=axis)
        else:
            cur_reindexers = reindexers

        result[k] = concat_arrays(
            [
                el if not_missing(el) else np.zeros((n, 0), dtype=bool)
                for el, n in zip(els, ns)
            ],
            cur_reindexers,
            axis=axis,
            index=index,
            fill_value=fill_value,
        )
    return result


def concat_pairwise_mapping(
    mappings: Collection[Mapping], shapes: Collection[int], join_keys=intersect_keys
):
    result = {}
    for k in join_keys(mappings):
        els = [
            m.get(k, sparse.csr_matrix((s, s), dtype=bool))
            for m, s in zip(mappings, shapes)
        ]
        result[k] = sparse.block_diag(els, format="csr")
    return result


def merge_dataframes(dfs, new_index, merge_strategy=merge_unique):
    dfs = [df.reindex(index=new_index) for df in dfs]
    # New dataframe with all shared data
    new_df = pd.DataFrame(merge_strategy(dfs), index=new_index)
    return new_df


def merge_outer(mappings, batch_keys, *, join_index="-", merge=merge_unique):
    """
    Combine elements of two mappings, such that non-overlapping entries are added with their batch-key appended.

    Note: this currently does NOT work for nested mappings. Additionally, values are not promised to be unique, and may be overwritten.
    """
    all_keys = union_keys(mappings)
    out = merge(mappings)
    for key in all_keys.difference(out.keys()):
        for b, m in zip(batch_keys, mappings):
            val = m.get(key, None)
            if val is not None:
                out[f"{key}{join_index}{b}"] = val
    return out


def _resolve_dim(*, dim: str = None, axis: int = None) -> Tuple[int, str]:
    _dims = ("obs", "var")
    if (dim is None and axis is None) or (dim is not None and axis is not None):
        raise ValueError(
            f"Must pass exactly one of `dim` or `axis`. Got: dim={dim}, axis={axis}."
        )
    elif dim is not None and dim not in _dims:
        raise ValueError(f"`dim` must be one of ('obs', 'var'), was {dim}")
    elif axis is not None and axis not in (0, 1):
        raise ValueError(f"`axis` must be either 0 or 1, was {axis}")
    if dim is not None:
        return _dims.index(dim), dim
    else:
        return axis, _dims[axis]


def dim_indices(adata, *, axis=None, dim=None):
    _, dim = _resolve_dim(axis=axis, dim=dim)
    return getattr(adata, f"{dim}_names")


def dim_size(adata, *, axis=None, dim=None):
    ax, _ = _resolve_dim(axis, dim)
    return adata.shape[ax]


def concat(
    adatas: Union[Collection[AnnData], "typing.Mapping[str, AnnData]"],
    *,
    axis: Literal[0, 1] = 0,
    join: Literal["inner", "outer"] = "inner",
    merge: Union[StrategiesLiteral, Callable, None] = None,
    uns_merge: Union[StrategiesLiteral, Callable, None] = None,
    label: Optional[str] = None,
    keys: Optional[Collection] = None,
    index_unique: Optional[str] = None,
    fill_value: Optional[Any] = None,
    pairwise: bool = False,
) -> AnnData:
    """Concatenates AnnData objects along an axis.

    See the :doc:`concatenation` section in the docs for a more in-depth description.

    .. warning::

        This function is marked as experimental for the `0.7` release series, and will
        supercede the :meth:`AnnData.concatenate() <anndata.AnnData.concatenate>` method
        in future releases.

    Params
    ------
    adatas
        The objects to be concatenated. If a Mapping is passed, keys are used for the `keys`
        argument and values are concatenated.
    axis
        Which axis to concatenate along.
    join
        How to align values when concatenating. If "outer", the union of the other axis
        is taken. If "inner", the intersection. See :doc:`concatenation` for more.
    merge
        How elements not aligned to the axis being concatenated along are selected.
        Currently implemented strategies include:

        * `None`: No elements are kept.
        * `"same"`: Elements that are the same in each of the objects.
        * `"unique"`: Elements for which there is only one possible value.
        * `"first"`: The first element seen at each from each position.
        * `"only"`: Elements that show up in only one of the objects.
    uns_merge
        How the elements of `.uns` are selected. Uses the same set of strategies as
        the `merge` argument, except applied recursively.
    label
        Column in axis annotation (i.e. `.obs` or `.var`) to place batch information in.
        If it's None, no column is added.
    keys
        Names for each object being added. These values are used for column values for
        `label` or appended to the index if `index_unique` is not `None`. Defaults to
        incrementing integer labels.
    index_unique
        Whether to make the index unique by using the keys. If provided, this
        is the delimeter between "{orig_idx}{index_unique}{key}". When `None`,
        the original indices are kept.
    fill_value
        When `join="outer"`, this is the value that will be used to fill the introduced
        indices. By default, sparse arrays are padded with zeros, while dense arrays and
        DataFrames are padded with missing values.
    pairwise
        Whether pairwise elements along the concatenated dimension should be included.
        This is False by default, since the resulting arrays are often not meaningful.

    Notes
    -----

    .. warning::

        If you use `join='outer'` this fills 0s for sparse data when
        variables are absent in a batch. Use this with care. Dense data is
        filled with `NaN`.

    Examples
    --------

    Preparing example objects

    >>> import anndata as ad, pandas as pd, numpy as np
    >>> from scipy import sparse
    >>> a = ad.AnnData(
    ...     X=sparse.csr_matrix(np.array([[0, 1], [2, 3]])),
    ...     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
    ...     var=pd.DataFrame(index=["var1", "var2"]),
    ...     varm={"ones": np.ones((2, 5)), "rand": np.random.randn(2, 3), "zeros": np.zeros((2, 5))},
    ...     uns={"a": 1, "b": 2, "c": {"c.a": 3, "c.b": 4}},
    ... )
    >>> b = ad.AnnData(
    ...     X=sparse.csr_matrix(np.array([[4, 5, 6], [7, 8, 9]])),
    ...     obs=pd.DataFrame({"group": ["b", "c"], "measure": [1.2, 4.3]}, index=["s3", "s4"]),
    ...     var=pd.DataFrame(index=["var1", "var2", "var3"]),
    ...     varm={"ones": np.ones((3, 5)), "rand": np.random.randn(3, 5)},
    ...     uns={"a": 1, "b": 3, "c": {"c.b": 4}},
    ... )
    >>> c = ad.AnnData(
    ...     X=sparse.csr_matrix(np.array([[10, 11], [12, 13]])),
    ...     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
    ...     var=pd.DataFrame(index=["var3", "var4"]),
    ...     uns={"a": 1, "b": 4, "c": {"c.a": 3, "c.b": 4, "c.c": 5}},
    ... )

    Concatenating along different axes

    >>> ad.concat([a, b]).to_df()
        var1  var2
    s1   0.0   1.0
    s2   2.0   3.0
    s3   4.0   5.0
    s4   7.0   8.0
    >>> ad.concat([a, c], axis=1).to_df()
        var1  var2  var3  var4
    s1   0.0   1.0  10.0  11.0
    s2   2.0   3.0  12.0  13.0

    Inner and outer joins

    >>> inner = ad.concat([a, b])  # Joining on intersection of variables
    >>> inner
    AnnData object with n_obs × n_vars = 4 × 2
        obs: 'group'
    >>> (inner.obs_names, inner.var_names)  # doctest: +NORMALIZE_WHITESPACE
    (Index(['s1', 's2', 's3', 's4'], dtype='object'),
    Index(['var1', 'var2'], dtype='object'))
    >>> outer = ad.concat([a, b], join="outer") # Joining on union of variables
    >>> outer
    AnnData object with n_obs × n_vars = 4 × 3
        obs: 'group', 'measure'
    >>> outer.var_names
    Index(['var1', 'var2', 'var3'], dtype='object')
    >>> outer.to_df()  # Sparse arrays are padded with zeroes by default
        var1  var2  var3
    s1   0.0   1.0   0.0
    s2   2.0   3.0   0.0
    s3   4.0   5.0   6.0
    s4   7.0   8.0   9.0

    Keeping track of source objects

    >>> ad.concat({"a": a, "b": b}, label="batch").obs
       group batch
    s1     a     a
    s2     b     a
    s3     b     b
    s4     c     b
    >>> ad.concat([a, b], label="batch", keys=["a", "b"]).obs  # Equivalent to previous
       group batch
    s1     a     a
    s2     b     a
    s3     b     b
    s4     c     b
    >>> ad.concat({"a": a, "b": b}, index_unique="-").obs
         group
    s1-a     a
    s2-a     b
    s3-b     b
    s4-b     c

    Combining values not aligned to axis of concatenation

    >>> ad.concat([a, b], merge="same")
    AnnData object with n_obs × n_vars = 4 × 2
        obs: 'group'
        varm: 'ones'
    >>> ad.concat([a, b], merge="unique")
    AnnData object with n_obs × n_vars = 4 × 2
        obs: 'group'
        varm: 'ones', 'zeros'
    >>> ad.concat([a, b], merge="first")
    AnnData object with n_obs × n_vars = 4 × 2
        obs: 'group'
        varm: 'ones', 'rand', 'zeros'
    >>> ad.concat([a, b], merge="only")
    AnnData object with n_obs × n_vars = 4 × 2
        obs: 'group'
        varm: 'zeros'

    The same merge strategies can be used for elements in `.uns`

    >>> dict(ad.concat([a, b, c], uns_merge="same").uns)
    {'a': 1, 'c': {'c.b': 4}}
    >>> dict(ad.concat([a, b, c], uns_merge="unique").uns)
    {'a': 1, 'c': {'c.a': 3, 'c.b': 4, 'c.c': 5}}
    >>> dict(ad.concat([a, b, c], uns_merge="only").uns)
    {'c': {'c.c': 5}}
    >>> dict(ad.concat([a, b, c], uns_merge="first").uns)
    {'a': 1, 'b': 2, 'c': {'c.a': 3, 'c.b': 4, 'c.c': 5}}
    """
    # Argument normalization
    merge = resolve_merge_strategy(merge)
    uns_merge = resolve_merge_strategy(uns_merge)

    if isinstance(adatas, Mapping):
        if keys is not None:
            raise TypeError(
                "Cannot specify categories in both mapping keys and using `keys`. "
                "Only specify this once."
            )
        keys, adatas = list(adatas.keys()), list(adatas.values())
    else:
        adatas = list(adatas)

    if keys is None:
        keys = np.arange(len(adatas)).astype(str)
    if axis == 0:
        dim = "obs"
    elif axis == 1:
        dim = "var"

    alt_axis, alt_dim = _resolve_dim(axis=1 - axis)

    # Label column
    label_col = pd.Categorical.from_codes(
        np.repeat(np.arange(len(adatas)), [a.shape[axis] for a in adatas]),
        categories=keys,
    )

    # Combining indexes
    concat_indices = pd.concat(
        [pd.Series(dim_indices(a, axis=axis)) for a in adatas], ignore_index=True
    )
    if index_unique is not None:
        concat_indices = concat_indices.str.cat(label_col.map(str), sep=index_unique)
    concat_indices = pd.Index(concat_indices)

    alt_indices = resolve_index(
        [dim_indices(a, axis=1 - axis) for a in adatas], join=join
    )
    reindexers = [
        gen_reindexer(alt_indices, dim_indices(a, axis=1 - axis)) for a in adatas
    ]

    # Annotation for concatenation axis
    concat_annot = pd.concat(
        [getattr(a, dim) for a in adatas], join=join, ignore_index=True
    )
    concat_annot.index = concat_indices
    if label is not None:
        concat_annot[label] = label_col

    # Annotation for other axis
    alt_annot = merge_dataframes(
        [getattr(a, alt_dim) for a in adatas], alt_indices, merge
    )

    X = concat_arrays(
        [a.X for a in adatas], reindexers, axis=axis, fill_value=fill_value
    )

    if join == "inner":
        layers = inner_concat_aligned_mapping(
            [a.layers for a in adatas], axis=axis, reindexers=reindexers
        )
        concat_mapping = inner_concat_aligned_mapping(
            [getattr(a, f"{dim}m") for a in adatas], index=concat_indices
        )
        if pairwise:
            concat_pairwise = concat_pairwise_mapping(
                mappings=[getattr(a, f"{dim}p") for a in adatas],
                shapes=[a.shape[axis] for a in adatas],
                join_keys=intersect_keys,
            )
        else:
            concat_pairwise = {}
    elif join == "outer":
        layers = outer_concat_aligned_mapping(
            [a.layers for a in adatas], reindexers, axis=axis, fill_value=fill_value
        )
        concat_mapping = outer_concat_aligned_mapping(
            [getattr(a, f"{dim}m") for a in adatas],
            index=concat_indices,
            fill_value=fill_value,
        )
        if pairwise:
            concat_pairwise = concat_pairwise_mapping(
                mappings=[getattr(a, f"{dim}p") for a in adatas],
                shapes=[a.shape[axis] for a in adatas],
                join_keys=union_keys,
            )
        else:
            concat_pairwise = {}

    # TODO: Reindex lazily, so we don't have to make those copies until we're sure we need the element
    alt_mapping = merge(
        [
            {k: r(v, axis=0) for k, v in getattr(a, f"{alt_dim}m").items()}
            for r, a in zip(reindexers, adatas)
        ],
    )
    alt_pairwise = merge(
        [
            {k: r(r(v, axis=0), axis=1) for k, v in getattr(a, f"{alt_dim}p").items()}
            for r, a in zip(reindexers, adatas)
        ]
    )
    uns = uns_merge([a.uns for a in adatas])

    raw = None
    has_raw = [a.raw is not None for a in adatas]
    if all(has_raw):
        raw = concat(
            [
                AnnData(
                    X=a.raw.X,
                    obs=pd.DataFrame(index=a.obs_names),
                    var=a.raw.var,
                    varm=a.raw.varm,
                )
                for a in adatas
            ],
            join=join,
            label=label,
            keys=keys,
            index_unique=index_unique,
            fill_value=fill_value,
            axis=axis,
        )
    elif any(has_raw):
        warn(
            "Only some AnnData objects have `.raw` attribute, "
            "not concatenating `.raw` attributes.",
            UserWarning,
        )
    return AnnData(
        **{
            "X": X,
            "layers": layers,
            dim: concat_annot,
            alt_dim: alt_annot,
            f"{dim}m": concat_mapping,
            f"{alt_dim}m": alt_mapping,
            f"{dim}p": concat_pairwise,
            f"{alt_dim}p": alt_pairwise,
            "uns": uns,
            "raw": raw,
        }
    )