File: h5ad.py

package info (click to toggle)
python-anndata 0.7.5%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 628 kB
  • sloc: python: 7,779; makefile: 8
file content (603 lines) | stat: -rw-r--r-- 21,186 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import re
import collections.abc as cabc
from functools import _find_impl, partial
from warnings import warn
from pathlib import Path
from types import MappingProxyType
from typing import Callable, Type, TypeVar, Union
from typing import Collection, Sequence, Mapping

try:
    from importlib.metadata import version
except ImportError:
    from importlib_metadata import version

import h5py
import numpy as np
import pandas as pd
from pandas.api.types import is_categorical_dtype
from scipy import sparse

from .._core.sparse_dataset import SparseDataset
from .._core.file_backing import AnnDataFileManager
from .._core.anndata import AnnData
from .._core.raw import Raw
from ..compat import (
    _from_fixed_length_strings,
    _decode_structured_array,
    _clean_uns,
    Literal,
)
from .utils import (
    report_read_key_on_error,
    report_write_key_on_error,
    idx_chunks_along_axis,
    write_attribute,
    read_attribute,
    _read_legacy_raw,
    EncodingVersions,
)

# For allowing h5py v3
# https://github.com/theislab/anndata/issues/442
H5PY_V3 = version("h5py") >= "3"

H5Group = Union[h5py.Group, h5py.File]
H5Dataset = Union[h5py.Dataset]
T = TypeVar("T")


def _to_hdf5_vlen_strings(value: np.ndarray) -> np.ndarray:
    """This corrects compound dtypes to work with hdf5 files."""
    new_dtype = []
    for dt_name, (dt_type, _) in value.dtype.fields.items():
        if dt_type.kind in ("U", "O"):
            new_dtype.append((dt_name, h5py.special_dtype(vlen=str)))
        else:
            new_dtype.append((dt_name, dt_type))
    return value.astype(new_dtype)


def write_h5ad(
    filepath: Union[Path, str],
    adata: AnnData,
    *,
    force_dense: bool = None,
    as_dense: Sequence[str] = (),
    dataset_kwargs: Mapping = MappingProxyType({}),
    **kwargs,
) -> None:
    if force_dense is not None:
        warn(
            "The `force_dense` argument is deprecated. Use `as_dense` instead.",
            FutureWarning,
        )
    if force_dense is True:
        if adata.raw is not None:
            as_dense = ("X", "raw/X")
        else:
            as_dense = ("X",)
    if isinstance(as_dense, str):
        as_dense = [as_dense]
    if "raw.X" in as_dense:
        as_dense = list(as_dense)
        as_dense[as_dense.index("raw.X")] = "raw/X"
    if any(val not in {"X", "raw/X"} for val in as_dense):
        raise NotImplementedError(
            "Currently, only `X` and `raw/X` are supported values in `as_dense`"
        )
    if "raw/X" in as_dense and adata.raw is None:
        raise ValueError("Cannot specify writing `raw/X` to dense if it doesn’t exist.")

    adata.strings_to_categoricals()
    if adata.raw is not None:
        adata.strings_to_categoricals(adata.raw.var)
    dataset_kwargs = {**dataset_kwargs, **kwargs}
    filepath = Path(filepath)
    mode = "a" if adata.isbacked else "w"
    if adata.isbacked:  # close so that we can reopen below
        adata.file.close()
    with h5py.File(filepath, mode) as f:
        if "X" in as_dense and isinstance(adata.X, (sparse.spmatrix, SparseDataset)):
            write_sparse_as_dense(f, "X", adata.X, dataset_kwargs=dataset_kwargs)
        elif not (adata.isbacked and Path(adata.filename) == Path(filepath)):
            # If adata.isbacked, X should already be up to date
            write_attribute(f, "X", adata.X, dataset_kwargs=dataset_kwargs)
        if "raw/X" in as_dense and isinstance(
            adata.raw.X, (sparse.spmatrix, SparseDataset)
        ):
            write_sparse_as_dense(
                f, "raw/X", adata.raw.X, dataset_kwargs=dataset_kwargs
            )
            write_attribute(f, "raw/var", adata.raw.var, dataset_kwargs=dataset_kwargs)
            write_attribute(
                f, "raw/varm", adata.raw.varm, dataset_kwargs=dataset_kwargs
            )
        else:
            write_attribute(f, "raw", adata.raw, dataset_kwargs=dataset_kwargs)
        write_attribute(f, "obs", adata.obs, dataset_kwargs=dataset_kwargs)
        write_attribute(f, "var", adata.var, dataset_kwargs=dataset_kwargs)
        write_attribute(f, "obsm", adata.obsm, dataset_kwargs=dataset_kwargs)
        write_attribute(f, "varm", adata.varm, dataset_kwargs=dataset_kwargs)
        write_attribute(f, "obsp", adata.obsp, dataset_kwargs=dataset_kwargs)
        write_attribute(f, "varp", adata.varp, dataset_kwargs=dataset_kwargs)
        write_attribute(f, "layers", adata.layers, dataset_kwargs=dataset_kwargs)
        write_attribute(f, "uns", adata.uns, dataset_kwargs=dataset_kwargs)
    if adata.isbacked:
        adata.file.open(filepath, "r+")


def _write_method(cls: Type[T]) -> Callable[[H5Group, str, T], None]:
    return _find_impl(cls, H5AD_WRITE_REGISTRY)


@write_attribute.register(h5py.File)
@write_attribute.register(h5py.Group)
def write_attribute_h5ad(f: H5Group, key: str, value, *args, **kwargs):
    if key in f:
        del f[key]
    _write_method(type(value))(f, key, value, *args, **kwargs)


def write_raw(f, key, value, dataset_kwargs=MappingProxyType({})):
    group = f.create_group(key)
    group.attrs["encoding-type"] = "raw"
    group.attrs["encoding-version"] = EncodingVersions.raw.value
    group.attrs["shape"] = value.shape
    write_attribute(f, "raw/X", value.X, dataset_kwargs=dataset_kwargs)
    write_attribute(f, "raw/var", value.var, dataset_kwargs=dataset_kwargs)
    write_attribute(f, "raw/varm", value.varm, dataset_kwargs=dataset_kwargs)


@report_write_key_on_error
def write_not_implemented(f, key, value, dataset_kwargs=MappingProxyType({})):
    # If it’s not an array, try and make it an array. If that fails, pickle it.
    # Maybe rethink that, maybe this should just pickle,
    # and have explicit implementations for everything else
    raise NotImplementedError(
        f"Failed to write value for {key}, "
        f"since a writer for type {type(value)} has not been implemented yet."
    )


@report_write_key_on_error
def write_basic(f, key, value, dataset_kwargs=MappingProxyType({})):
    f.create_dataset(key, data=value, **dataset_kwargs)


@report_write_key_on_error
def write_list(f, key, value, dataset_kwargs=MappingProxyType({})):
    write_array(f, key, np.array(value), dataset_kwargs=dataset_kwargs)


@report_write_key_on_error
def write_none(f, key, value, dataset_kwargs=MappingProxyType({})):
    pass


@report_write_key_on_error
def write_scalar(f, key, value, dataset_kwargs=MappingProxyType({})):
    # Can’t compress scalars, error is thrown
    if "compression" in dataset_kwargs:
        dataset_kwargs = dict(dataset_kwargs)
        dataset_kwargs.pop("compression")
    write_array(f, key, np.array(value), dataset_kwargs=dataset_kwargs)


@report_write_key_on_error
def write_array(f, key, value, dataset_kwargs=MappingProxyType({})):
    # Convert unicode to fixed length strings
    if value.dtype.kind in {"U", "O"}:
        value = value.astype(h5py.special_dtype(vlen=str))
    elif value.dtype.names is not None:
        value = _to_hdf5_vlen_strings(value)
    f.create_dataset(key, data=value, **dataset_kwargs)


@report_write_key_on_error
def write_sparse_compressed(
    f, key, value, fmt: Literal["csr", "csc"], dataset_kwargs=MappingProxyType({})
):
    g = f.create_group(key)
    g.attrs["encoding-type"] = f"{fmt}_matrix"
    g.attrs["encoding-version"] = EncodingVersions[f"{fmt}_matrix"].value
    g.attrs["shape"] = value.shape

    # Allow resizing
    if "maxshape" not in dataset_kwargs:
        dataset_kwargs = dict(maxshape=(None,), **dataset_kwargs)

    g.create_dataset("data", data=value.data, **dataset_kwargs)
    g.create_dataset("indices", data=value.indices, **dataset_kwargs)
    g.create_dataset("indptr", data=value.indptr, **dataset_kwargs)


write_csr = partial(write_sparse_compressed, fmt="csr")
write_csc = partial(write_sparse_compressed, fmt="csc")


@report_write_key_on_error
def write_sparse_dataset(f, key, value, dataset_kwargs=MappingProxyType({})):
    write_sparse_compressed(
        f, key, value.to_backed(), fmt=value.format_str, dataset_kwargs=dataset_kwargs
    )


@report_write_key_on_error
def write_sparse_as_dense(f, key, value, dataset_kwargs=MappingProxyType({})):
    real_key = None  # Flag for if temporary key was used
    if key in f:
        if (
            isinstance(value, (h5py.Group, h5py.Dataset, SparseDataset))
            and value.file.filename == f.filename
        ):  # Write to temporary key before overwriting
            real_key = key
            # Transform key to temporary, e.g. raw/X -> raw/_X, or X -> _X
            key = re.sub(r"(.*)(\w(?!.*/))", r"\1_\2", key.rstrip("/"))
        else:
            del f[key]  # Wipe before write
    dset = f.create_dataset(key, shape=value.shape, dtype=value.dtype, **dataset_kwargs)
    compressed_axis = int(isinstance(value, sparse.csc_matrix))
    for idx in idx_chunks_along_axis(value.shape, compressed_axis, 1000):
        dset[idx] = value[idx].toarray()
    if real_key is not None:
        del f[real_key]
        f[real_key] = f[key]
        del f[key]


@report_write_key_on_error
def write_dataframe(f, key, df, dataset_kwargs=MappingProxyType({})):
    # Check arguments
    for reserved in ("__categories", "_index"):
        if reserved in df.columns:
            raise ValueError(f"{reserved!r} is a reserved name for dataframe columns.")
    group = f.create_group(key)
    group.attrs["encoding-type"] = "dataframe"
    group.attrs["encoding-version"] = EncodingVersions.dataframe.value
    group.attrs["column-order"] = list(df.columns)

    if df.index.name is not None:
        index_name = df.index.name
    else:
        index_name = "_index"
    group.attrs["_index"] = index_name

    write_series(group, index_name, df.index, dataset_kwargs=dataset_kwargs)
    for colname, series in df.items():
        write_series(group, colname, series, dataset_kwargs=dataset_kwargs)


@report_write_key_on_error
def write_series(group, key, series, dataset_kwargs=MappingProxyType({})):
    # group here is an h5py type, otherwise categoricals won’t write
    if series.dtype == object:  # Assuming it’s string
        group.create_dataset(
            key,
            data=series.values,
            dtype=h5py.special_dtype(vlen=str),
            **dataset_kwargs,
        )
    elif is_categorical_dtype(series):
        # This should work for categorical Index and Series
        categorical: pd.Categorical = series.values
        categories: np.ndarray = categorical.categories.values
        codes: np.ndarray = categorical.codes
        category_key = f"__categories/{key}"

        write_array(group, category_key, categories, dataset_kwargs=dataset_kwargs)
        write_array(group, key, codes, dataset_kwargs=dataset_kwargs)

        group[key].attrs["categories"] = group[category_key].ref
        group[category_key].attrs["ordered"] = categorical.ordered
    else:
        group[key] = series.values


def write_mapping(f, key, value, dataset_kwargs=MappingProxyType({})):
    for sub_key, sub_value in value.items():
        write_attribute(f, f"{key}/{sub_key}", sub_value, dataset_kwargs=dataset_kwargs)


H5AD_WRITE_REGISTRY = {
    Raw: write_raw,
    object: write_not_implemented,
    h5py.Dataset: write_basic,
    list: write_list,
    type(None): write_none,
    str: write_scalar,
    float: write_scalar,
    np.floating: write_scalar,
    bool: write_scalar,
    np.bool_: write_scalar,
    int: write_scalar,
    np.integer: write_scalar,
    np.ndarray: write_array,
    sparse.csr_matrix: write_csr,
    sparse.csc_matrix: write_csc,
    SparseDataset: write_sparse_dataset,
    pd.DataFrame: write_dataframe,
    cabc.Mapping: write_mapping,
}


def read_h5ad_backed(filename: Union[str, Path], mode: Literal["r", "r+"]) -> AnnData:
    d = dict(filename=filename, filemode=mode)

    f = h5py.File(filename, mode)

    attributes = ["obsm", "varm", "obsp", "varp", "uns", "layers"]
    df_attributes = ["obs", "var"]

    d.update({k: read_attribute(f[k]) for k in attributes if k in f})
    for k in df_attributes:
        if k in f:  # Backwards compat
            d[k] = read_dataframe(f[k])

    d["raw"] = _read_raw(f, attrs={"var", "varm"})

    X_dset = f.get("X", None)
    if X_dset is None:
        pass
    elif isinstance(X_dset, h5py.Group):
        d["dtype"] = X_dset["data"].dtype
    elif hasattr(X_dset, "dtype"):
        d["dtype"] = f["X"].dtype
    else:
        raise ValueError()

    _clean_uns(d)

    return AnnData(**d)


def read_h5ad(
    filename: Union[str, Path],
    backed: Union[Literal["r", "r+"], bool, None] = None,
    *,
    as_sparse: Sequence[str] = (),
    as_sparse_fmt: Type[sparse.spmatrix] = sparse.csr_matrix,
    chunk_size: int = 6000,  # TODO, probably make this 2d chunks
) -> AnnData:
    """\
    Read `.h5ad`-formatted hdf5 file.

    Parameters
    ----------
    filename
        File name of data file.
    backed
        If `'r'`, load :class:`~anndata.AnnData` in `backed` mode
        instead of fully loading it into memory (`memory` mode).
        If you want to modify backed attributes of the AnnData object,
        you need to choose `'r+'`.
    as_sparse
        If an array was saved as dense, passing its name here will read it as
        a sparse_matrix, by chunk of size `chunk_size`.
    as_sparse_fmt
        Sparse format class to read elements from `as_sparse` in as.
    chunk_size
        Used only when loading sparse dataset that is stored as dense.
        Loading iterates through chunks of the dataset of this row size
        until it reads the whole dataset.
        Higher size means higher memory consumption and higher (to a point)
        loading speed.
    """
    if backed not in {None, False}:
        mode = backed
        if mode is True:
            mode = "r+"
        assert mode in {"r", "r+"}
        return read_h5ad_backed(filename, mode)

    if as_sparse_fmt not in (sparse.csr_matrix, sparse.csc_matrix):
        raise NotImplementedError(
            "Dense formats can only be read to CSR or CSC matrices at this time."
        )
    if isinstance(as_sparse, str):
        as_sparse = [as_sparse]
    else:
        as_sparse = list(as_sparse)
    for i in range(len(as_sparse)):
        if as_sparse[i] in {("raw", "X"), "raw.X"}:
            as_sparse[i] = "raw/X"
        elif as_sparse[i] not in {"raw/X", "X"}:
            raise NotImplementedError(
                "Currently only `X` and `raw/X` can be read as sparse."
            )

    rdasp = partial(
        read_dense_as_sparse, sparse_format=as_sparse_fmt, axis_chunk=chunk_size
    )

    with h5py.File(filename, "r") as f:
        d = {}
        for k in f.keys():
            # Backwards compat for old raw
            if k == "raw" or k.startswith("raw."):
                continue
            if k == "X" and "X" in as_sparse:
                d[k] = rdasp(f[k])
            elif k == "raw":
                assert False, "unexpected raw format"
            elif k in {"obs", "var"}:
                d[k] = read_dataframe(f[k])
            else:  # Base case
                d[k] = read_attribute(f[k])

        d["raw"] = _read_raw(f, as_sparse, rdasp)

        X_dset = f.get("X", None)
        if X_dset is None:
            pass
        elif isinstance(X_dset, h5py.Group):
            d["dtype"] = X_dset["data"].dtype
        elif hasattr(X_dset, "dtype"):
            d["dtype"] = f["X"].dtype
        else:
            raise ValueError()

    _clean_uns(d)  # backwards compat

    return AnnData(**d)


def _read_raw(
    f: Union[h5py.File, AnnDataFileManager],
    as_sparse: Collection[str] = (),
    rdasp: Callable[[h5py.Dataset], sparse.spmatrix] = None,
    *,
    attrs: Collection[str] = ("X", "var", "varm"),
):
    if as_sparse:
        assert rdasp is not None, "must supply rdasp if as_sparse is supplied"
    raw = {}
    if "X" in attrs and "raw/X" in f:
        read_x = rdasp if "raw/X" in as_sparse else read_attribute
        raw["X"] = read_x(f["raw/X"])
    for v in ("var", "varm"):
        if v in attrs and f"raw/{v}" in f:
            raw[v] = read_attribute(f[f"raw/{v}"])
    return _read_legacy_raw(f, raw, read_dataframe, read_attribute, attrs=attrs)


@report_read_key_on_error
def read_dataframe_legacy(dataset) -> pd.DataFrame:
    """Read pre-anndata 0.7 dataframes."""
    if H5PY_V3:
        df = pd.DataFrame(
            _decode_structured_array(
                _from_fixed_length_strings(dataset[()]), dtype=dataset.dtype
            )
        )
    else:
        df = pd.DataFrame(_from_fixed_length_strings(dataset[()]))
    df.set_index(df.columns[0], inplace=True)
    return df


@report_read_key_on_error
def read_dataframe(group) -> pd.DataFrame:
    if not isinstance(group, h5py.Group):
        return read_dataframe_legacy(group)
    columns = list(group.attrs["column-order"])
    idx_key = group.attrs["_index"]
    df = pd.DataFrame(
        {k: read_series(group[k]) for k in columns},
        index=read_series(group[idx_key]),
        columns=list(columns),
    )
    if idx_key != "_index":
        df.index.name = idx_key
    return df


@report_read_key_on_error
def read_series(dataset) -> Union[np.ndarray, pd.Categorical]:
    if "categories" in dataset.attrs:
        categories = dataset.attrs["categories"]
        if isinstance(categories, h5py.Reference):
            categories_dset = dataset.parent[dataset.attrs["categories"]]
            categories = read_dataset(categories_dset)
            ordered = bool(categories_dset.attrs.get("ordered", False))
        else:
            # TODO: remove this code at some point post 0.7
            # TODO: Add tests for this
            warn(
                f"Your file {str(dataset.file.name)!r} has invalid categorical "
                "encodings due to being written from a development version of "
                "AnnData. Rewrite the file ensure you can read it in the future.",
                FutureWarning,
            )
        return pd.Categorical.from_codes(
            read_dataset(dataset), categories, ordered=ordered
        )
    else:
        return read_dataset(dataset)


# @report_read_key_on_error
# def read_sparse_dataset_backed(group: h5py.Group) -> sparse.spmatrix:
#     return SparseDataset(group)


@read_attribute.register(h5py.Group)
@report_read_key_on_error
def read_group(group: h5py.Group) -> Union[dict, pd.DataFrame, sparse.spmatrix]:
    if "h5sparse_format" in group.attrs:  # Backwards compat
        return SparseDataset(group).to_memory()

    encoding_type = group.attrs.get("encoding-type")
    if encoding_type:
        EncodingVersions[encoding_type].check(
            group.name, group.attrs["encoding-version"]
        )
    if encoding_type in {None, "raw"}:
        pass
    elif encoding_type == "dataframe":
        return read_dataframe(group)
    elif encoding_type in {"csr_matrix", "csc_matrix"}:
        return SparseDataset(group).to_memory()
    else:
        raise ValueError(f"Unfamiliar `encoding-type`: {encoding_type}.")
    d = dict()
    for sub_key, sub_value in group.items():
        d[sub_key] = read_attribute(sub_value)
    return d


@read_attribute.register(h5py.Dataset)
@report_read_key_on_error
def read_dataset(dataset: h5py.Dataset):
    if H5PY_V3:
        string_dtype = h5py.check_string_dtype(dataset.dtype)
        if (string_dtype is not None) and (string_dtype.encoding == "utf-8"):
            dataset = dataset.asstr()
    value = dataset[()]
    if not hasattr(value, "dtype"):
        return value
    elif isinstance(value.dtype, str):
        pass
    elif issubclass(value.dtype.type, np.string_):
        value = value.astype(str)
        # Backwards compat, old datasets have strings as one element 1d arrays
        if len(value) == 1:
            return value[0]
    elif len(value.dtype.descr) > 1:  # Compound dtype
        # For backwards compat, now strings are written as variable length
        dtype = value.dtype
        value = _from_fixed_length_strings(value)
        if H5PY_V3:
            value = _decode_structured_array(value, dtype=dtype)
    if value.shape == ():
        value = value[()]
    return value


@report_read_key_on_error
def read_dense_as_sparse(
    dataset: h5py.Dataset, sparse_format: sparse.spmatrix, axis_chunk: int
):
    if sparse_format == sparse.csr_matrix:
        return read_dense_as_csr(dataset, axis_chunk)
    elif sparse_format == sparse.csc_matrix:
        return read_dense_as_csc(dataset, axis_chunk)
    else:
        raise ValueError(f"Cannot read dense array as type: {sparse_format}")


def read_dense_as_csr(dataset, axis_chunk=6000):
    sub_matrices = []
    for idx in idx_chunks_along_axis(dataset.shape, 0, axis_chunk):
        dense_chunk = dataset[idx]
        sub_matrix = sparse.csr_matrix(dense_chunk)
        sub_matrices.append(sub_matrix)
    return sparse.vstack(sub_matrices, format="csr")


def read_dense_as_csc(dataset, axis_chunk=6000):
    sub_matrices = []
    for idx in idx_chunks_along_axis(dataset.shape, 1, axis_chunk):
        sub_matrix = sparse.csc_matrix(dataset[idx])
        sub_matrices.append(sub_matrix)
    return sparse.hstack(sub_matrices, format="csc")