File: helpers.py

package info (click to toggle)
python-anndata 0.7.5%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 628 kB
  • sloc: python: 7,779; makefile: 8
file content (396 lines) | stat: -rw-r--r-- 12,415 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
from functools import singledispatch, wraps
from string import ascii_letters
from typing import Tuple
from collections.abc import Mapping
import warnings

import h5py
import numpy as np
import pandas as pd
from pandas.api.types import is_numeric_dtype
import pytest
from scipy import sparse

from anndata import AnnData
from anndata._core.views import ArrayView
from anndata._core.sparse_dataset import SparseDataset
from anndata._core.aligned_mapping import AlignedMapping
from anndata.utils import asarray


def gen_vstr_recarray(m, n, dtype=None):
    size = m * n
    lengths = np.random.randint(3, 5, size)
    letters = np.array(list(ascii_letters))
    gen_word = lambda l: "".join(np.random.choice(letters, l))
    arr = np.array([gen_word(l) for l in lengths]).reshape(m, n)
    return pd.DataFrame(arr, columns=[gen_word(5) for i in range(n)]).to_records(
        index=False, column_dtypes=dtype
    )


def gen_typed_df(n, index=None):
    # TODO: Think about allowing index to be passed for n
    letters = np.fromiter(iter(ascii_letters), "U1")
    if n > len(letters):
        letters = letters[: n // 2]  # Make sure categories are repeated
    return pd.DataFrame(
        dict(
            cat=pd.Categorical(np.random.choice(letters, n)),
            cat_ordered=pd.Categorical(np.random.choice(letters, n), ordered=True),
            int64=np.random.randint(-50, 50, n),
            float64=np.random.random(n),
            uint8=np.random.randint(255, size=n, dtype="uint8"),
        ),
        index=index,
    )


def gen_typed_df_t2_size(m, n, index=None, columns=None) -> pd.DataFrame:
    s = 0
    df = pd.DataFrame()
    new_vals = gen_typed_df(m)
    while s < (n / new_vals.shape[1]):
        new_vals = gen_typed_df(m, index=index)
        new_vals.columns = new_vals.columns + "_" + str(s)
        df[new_vals.columns] = new_vals
        s += 1
    df = df.iloc[:m, :n].copy()
    if columns is not None:
        df.columns = columns
    return df


# TODO: Use hypothesis for this?
def gen_adata(
    shape: Tuple[int, int],
    X_type=sparse.csr_matrix,
    X_dtype=np.float32,
    # obs_dtypes,
    # var_dtypes,
    obsm_types: "Collection[Type]" = (sparse.csr_matrix, np.ndarray, pd.DataFrame),
    varm_types: "Collection[Type]" = (sparse.csr_matrix, np.ndarray, pd.DataFrame),
    layers_types: "Collection[Type]" = (sparse.csr_matrix, np.ndarray, pd.DataFrame),
) -> AnnData:
    """\
    Helper function to generate a random AnnData for testing purposes.

    Note: For `obsm_types`, `varm_types`, and `layers_types` these currently
    just filter already created objects.
    In future, these should choose which objects are created.

    Params
    ------
    shape
        What shape you want the anndata to be.
    X_type
        What kind of container should `X` be? This will be called on a randomly
        generated 2d array.
    X_dtype
        What should the dtype of the `.X` container be?
    obsm_types
        What kinds of containers should be in `.obsm`?
    varm_types
        What kinds of containers should be in `.varm`?
    layers_types
        What kinds of containers should be in `.layers`?
    """
    M, N = shape
    obs_names = pd.Index(f"cell{i}" for i in range(shape[0]))
    var_names = pd.Index(f"gene{i}" for i in range(shape[1]))
    obs = gen_typed_df(M, obs_names)
    var = gen_typed_df(N, var_names)
    # For #147
    obs.rename(columns=dict(cat="obs_cat"), inplace=True)
    var.rename(columns=dict(cat="var_cat"), inplace=True)

    obsm = dict(
        array=np.random.random((M, 50)),
        sparse=sparse.random(M, 100, format="csr"),
        df=gen_typed_df(M, obs_names),
    )
    obsm = {k: v for k, v in obsm.items() if type(v) in obsm_types}
    varm = dict(
        array=np.random.random((N, 50)),
        sparse=sparse.random(N, 100, format="csr"),
        df=gen_typed_df(N, var_names),
    )
    varm = {k: v for k, v in varm.items() if type(v) in varm_types}
    layers = dict(
        array=np.random.random((M, N)), sparse=sparse.random(M, N, format="csr")
    )
    layers = {k: v for k, v in layers.items() if type(v) in layers_types}
    obsp = dict(
        array=np.random.random((M, M)), sparse=sparse.random(M, M, format="csr")
    )
    varp = dict(
        array=np.random.random((N, N)), sparse=sparse.random(N, N, format="csr")
    )
    uns = dict(
        O_recarray=gen_vstr_recarray(N, 5),
        # U_recarray=gen_vstr_recarray(N, 5, "U4")
    )
    adata = AnnData(
        X=X_type(np.random.binomial(100, 0.005, (M, N)).astype(X_dtype)),
        obs=obs,
        var=var,
        obsm=obsm,
        varm=varm,
        layers=layers,
        obsp=obsp,
        varp=varp,
        dtype=X_dtype,
        uns=uns,
    )
    return adata


def array_bool_subset(index, min_size=2):
    b = np.zeros(len(index), dtype=bool)
    selected = np.random.choice(
        range(len(index)),
        size=np.random.randint(min_size, len(index), ()),
        replace=False,
    )
    b[selected] = True
    return b


def matrix_bool_subset(index, min_size=2):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", PendingDeprecationWarning)
        indexer = np.matrix(
            array_bool_subset(index, min_size=min_size).reshape(len(index), 1)
        )
    return indexer


def spmatrix_bool_subset(index, min_size=2):
    return sparse.csr_matrix(
        array_bool_subset(index, min_size=min_size).reshape(len(index), 1)
    )


def array_subset(index, min_size=2):
    if len(index) < min_size:
        raise ValueError(
            f"min_size (={min_size}) must be smaller than len(index) (={len(index)}"
        )
    return np.random.choice(
        index, size=np.random.randint(min_size, len(index), ()), replace=False
    )


def array_int_subset(index, min_size=2):
    if len(index) < min_size:
        raise ValueError(
            f"min_size (={min_size}) must be smaller than len(index) (={len(index)}"
        )
    return np.random.choice(
        np.arange(len(index)),
        size=np.random.randint(min_size, len(index), ()),
        replace=False,
    )


def slice_subset(index, min_size=2):
    while True:
        points = np.random.choice(np.arange(len(index) + 1), size=2, replace=False)
        s = slice(*sorted(points))
        if len(range(*s.indices(len(index)))) >= min_size:
            break
    return s


def single_subset(index):
    return index[np.random.randint(0, len(index), size=())]


@pytest.fixture(
    params=[
        array_subset,
        slice_subset,
        single_subset,
        array_int_subset,
        array_bool_subset,
        matrix_bool_subset,
        spmatrix_bool_subset,
    ]
)
def subset_func(request):
    return request.param


###################
# Checking equality
###################


def format_msg(elem_name):
    if elem_name is not None:
        return f"Error raised from element {elem_name!r}."
    else:
        return ""


# TODO: it would be better to modify the other exception
def report_name(func):
    """Report name of element being tested if test fails."""

    @wraps(func)
    def func_wrapper(*args, _elem_name=None, **kwargs):
        try:
            return func(*args, **kwargs)
        except Exception as e:
            if _elem_name is not None and not hasattr(e, "_name_attached"):
                msg = format_msg(_elem_name)
                args = list(e.args)
                if len(args) == 0:
                    args = [msg]
                else:
                    args[0] = f"{args[0]}\n\n{msg}"
                e.args = tuple(args)
                e._name_attached = True
            raise e

    return func_wrapper


@report_name
def _assert_equal(a, b):
    """Allows reporting elem name for simple assertion."""
    assert a == b


@singledispatch
def assert_equal(a, b, exact=False, elem_name=None):
    _assert_equal(a, b, _elem_name=elem_name)


@assert_equal.register(np.ndarray)
def assert_equal_ndarray(a, b, exact=False, elem_name=None):
    b = asarray(b)
    if not exact and is_numeric_dtype(a) and is_numeric_dtype(b):
        assert a.shape == b.shape, format_msg(elem_name)
        assert np.allclose(a, b, equal_nan=True), format_msg(elem_name)
    elif (  # Structured dtype
        not exact
        and hasattr(a, "dtype")
        and hasattr(b, "dtype")
        and len(a.dtype) > 1
        and len(b.dtype) > 0
    ):
        assert_equal(pd.DataFrame(a), pd.DataFrame(b), exact, elem_name)
    else:
        assert np.all(a == b), format_msg(elem_name)


@assert_equal.register(ArrayView)
def assert_equal_arrayview(a, b, exact=False, elem_name=None):
    assert_equal(asarray(a), asarray(b), exact=exact, elem_name=elem_name)


@assert_equal.register(SparseDataset)
@assert_equal.register(sparse.spmatrix)
def assert_equal_sparse(a, b, exact=False, elem_name=None):
    a = asarray(a)
    assert_equal(b, a, exact, elem_name=elem_name)


@assert_equal.register(h5py.Dataset)
def assert_equal_h5py_dataset(a, b, exact=False, elem_name=None):
    a = asarray(a)
    assert_equal(b, a, exact, elem_name=elem_name)


@assert_equal.register(pd.DataFrame)
def are_equal_dataframe(a, b, exact=False, elem_name=None):
    if not isinstance(b, pd.DataFrame):
        assert_equal(b, a, exact, elem_name)  # , a.values maybe?

    report_name(pd.testing.assert_frame_equal)(
        a,
        b,
        check_index_type=exact,
        check_exact=exact,
        _elem_name=elem_name,
        check_frame_type=False,
    )


@assert_equal.register(Mapping)
def assert_equal_mapping(a, b, exact=False, elem_name=None):
    assert set(a.keys()) == set(b.keys()), format_msg(elem_name)
    for k in a.keys():
        if elem_name is None:
            elem_name = ""
        assert_equal(a[k], b[k], exact, f"{elem_name}/{k}")


@assert_equal.register(AlignedMapping)
def assert_equal_aligned_mapping(a, b, exact=False, elem_name=None):
    a_indices = (a.parent.obs_names, a.parent.var_names)
    b_indices = (b.parent.obs_names, b.parent.var_names)
    for axis_idx in a.axes:
        assert_equal(
            a_indices[axis_idx], b_indices[axis_idx], exact=exact, elem_name=axis_idx
        )
    assert a.attrname == b.attrname, format_msg(elem_name)
    assert_equal_mapping(a, b, exact=exact, elem_name=elem_name)


@assert_equal.register(pd.Index)
def assert_equal_index(a, b, exact=False, elem_name=None):
    if not exact:
        report_name(pd.testing.assert_index_equal)(
            a, b, check_names=False, check_categorical=False, _elem_name=elem_name
        )
    else:
        report_name(pd.testing.assert_index_equal)(a, b, _elem_name=elem_name)


@assert_equal.register(AnnData)
def assert_adata_equal(a: AnnData, b: AnnData, exact: bool = False):
    """\
    Check whether two AnnData objects are equivalent,
    raising an AssertionError if they aren’t.

    Params
    ------
    a
    b
    exact
        Whether comparisons should be exact or not. This has a somewhat flexible
        meaning and should probably get refined in the future.
    """
    # There may be issues comparing views, since np.allclose
    # can modify ArrayViews if they contain `nan`s
    assert_equal(a.obs_names, b.obs_names, exact, elem_name="obs_names")
    assert_equal(a.var_names, b.var_names, exact, elem_name="var_names")
    if not exact:
        # Reorder all elements if neccesary
        idx = [slice(None), slice(None)]
        # Since it’s a pain to compare a list of pandas objects
        change_flag = False
        if not np.all(a.obs_names == b.obs_names):
            idx[0] = a.obs_names
            change_flag = True
        if not np.all(a.var_names == b.var_names):
            idx[1] = a.var_names
            change_flag = True
        if change_flag:
            b = b[tuple(idx)].copy()
    assert_equal(a.obs, b.obs, exact, elem_name="obs")
    assert_equal(a.var, b.var, exact, elem_name="var")
    assert_equal(a.X, b.X, exact, elem_name="X")
    for mapping_attr in ["obsm", "varm", "layers", "uns", "obsp", "varp"]:
        assert_equal(
            getattr(a, mapping_attr),
            getattr(b, mapping_attr),
            exact,
            elem_name=mapping_attr,
        )
    if a.raw is not None:
        assert_equal(a.raw.X, b.raw.X, exact, elem_name="raw/X")
        assert_equal(a.raw.var, b.raw.var, exact, elem_name="raw/var")
        assert_equal(a.raw.varm, b.raw.varm, exact, elem_name="raw/varm")