1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
from functools import singledispatch, wraps
from string import ascii_letters
from typing import Tuple
from collections.abc import Mapping
import warnings
import h5py
import numpy as np
import pandas as pd
from pandas.api.types import is_numeric_dtype
import pytest
from scipy import sparse
from anndata import AnnData
from anndata._core.views import ArrayView
from anndata._core.sparse_dataset import SparseDataset
from anndata._core.aligned_mapping import AlignedMapping
from anndata.utils import asarray
def gen_vstr_recarray(m, n, dtype=None):
size = m * n
lengths = np.random.randint(3, 5, size)
letters = np.array(list(ascii_letters))
gen_word = lambda l: "".join(np.random.choice(letters, l))
arr = np.array([gen_word(l) for l in lengths]).reshape(m, n)
return pd.DataFrame(arr, columns=[gen_word(5) for i in range(n)]).to_records(
index=False, column_dtypes=dtype
)
def gen_typed_df(n, index=None):
# TODO: Think about allowing index to be passed for n
letters = np.fromiter(iter(ascii_letters), "U1")
if n > len(letters):
letters = letters[: n // 2] # Make sure categories are repeated
return pd.DataFrame(
dict(
cat=pd.Categorical(np.random.choice(letters, n)),
cat_ordered=pd.Categorical(np.random.choice(letters, n), ordered=True),
int64=np.random.randint(-50, 50, n),
float64=np.random.random(n),
uint8=np.random.randint(255, size=n, dtype="uint8"),
),
index=index,
)
def gen_typed_df_t2_size(m, n, index=None, columns=None) -> pd.DataFrame:
s = 0
df = pd.DataFrame()
new_vals = gen_typed_df(m)
while s < (n / new_vals.shape[1]):
new_vals = gen_typed_df(m, index=index)
new_vals.columns = new_vals.columns + "_" + str(s)
df[new_vals.columns] = new_vals
s += 1
df = df.iloc[:m, :n].copy()
if columns is not None:
df.columns = columns
return df
# TODO: Use hypothesis for this?
def gen_adata(
shape: Tuple[int, int],
X_type=sparse.csr_matrix,
X_dtype=np.float32,
# obs_dtypes,
# var_dtypes,
obsm_types: "Collection[Type]" = (sparse.csr_matrix, np.ndarray, pd.DataFrame),
varm_types: "Collection[Type]" = (sparse.csr_matrix, np.ndarray, pd.DataFrame),
layers_types: "Collection[Type]" = (sparse.csr_matrix, np.ndarray, pd.DataFrame),
) -> AnnData:
"""\
Helper function to generate a random AnnData for testing purposes.
Note: For `obsm_types`, `varm_types`, and `layers_types` these currently
just filter already created objects.
In future, these should choose which objects are created.
Params
------
shape
What shape you want the anndata to be.
X_type
What kind of container should `X` be? This will be called on a randomly
generated 2d array.
X_dtype
What should the dtype of the `.X` container be?
obsm_types
What kinds of containers should be in `.obsm`?
varm_types
What kinds of containers should be in `.varm`?
layers_types
What kinds of containers should be in `.layers`?
"""
M, N = shape
obs_names = pd.Index(f"cell{i}" for i in range(shape[0]))
var_names = pd.Index(f"gene{i}" for i in range(shape[1]))
obs = gen_typed_df(M, obs_names)
var = gen_typed_df(N, var_names)
# For #147
obs.rename(columns=dict(cat="obs_cat"), inplace=True)
var.rename(columns=dict(cat="var_cat"), inplace=True)
obsm = dict(
array=np.random.random((M, 50)),
sparse=sparse.random(M, 100, format="csr"),
df=gen_typed_df(M, obs_names),
)
obsm = {k: v for k, v in obsm.items() if type(v) in obsm_types}
varm = dict(
array=np.random.random((N, 50)),
sparse=sparse.random(N, 100, format="csr"),
df=gen_typed_df(N, var_names),
)
varm = {k: v for k, v in varm.items() if type(v) in varm_types}
layers = dict(
array=np.random.random((M, N)), sparse=sparse.random(M, N, format="csr")
)
layers = {k: v for k, v in layers.items() if type(v) in layers_types}
obsp = dict(
array=np.random.random((M, M)), sparse=sparse.random(M, M, format="csr")
)
varp = dict(
array=np.random.random((N, N)), sparse=sparse.random(N, N, format="csr")
)
uns = dict(
O_recarray=gen_vstr_recarray(N, 5),
# U_recarray=gen_vstr_recarray(N, 5, "U4")
)
adata = AnnData(
X=X_type(np.random.binomial(100, 0.005, (M, N)).astype(X_dtype)),
obs=obs,
var=var,
obsm=obsm,
varm=varm,
layers=layers,
obsp=obsp,
varp=varp,
dtype=X_dtype,
uns=uns,
)
return adata
def array_bool_subset(index, min_size=2):
b = np.zeros(len(index), dtype=bool)
selected = np.random.choice(
range(len(index)),
size=np.random.randint(min_size, len(index), ()),
replace=False,
)
b[selected] = True
return b
def matrix_bool_subset(index, min_size=2):
with warnings.catch_warnings():
warnings.simplefilter("ignore", PendingDeprecationWarning)
indexer = np.matrix(
array_bool_subset(index, min_size=min_size).reshape(len(index), 1)
)
return indexer
def spmatrix_bool_subset(index, min_size=2):
return sparse.csr_matrix(
array_bool_subset(index, min_size=min_size).reshape(len(index), 1)
)
def array_subset(index, min_size=2):
if len(index) < min_size:
raise ValueError(
f"min_size (={min_size}) must be smaller than len(index) (={len(index)}"
)
return np.random.choice(
index, size=np.random.randint(min_size, len(index), ()), replace=False
)
def array_int_subset(index, min_size=2):
if len(index) < min_size:
raise ValueError(
f"min_size (={min_size}) must be smaller than len(index) (={len(index)}"
)
return np.random.choice(
np.arange(len(index)),
size=np.random.randint(min_size, len(index), ()),
replace=False,
)
def slice_subset(index, min_size=2):
while True:
points = np.random.choice(np.arange(len(index) + 1), size=2, replace=False)
s = slice(*sorted(points))
if len(range(*s.indices(len(index)))) >= min_size:
break
return s
def single_subset(index):
return index[np.random.randint(0, len(index), size=())]
@pytest.fixture(
params=[
array_subset,
slice_subset,
single_subset,
array_int_subset,
array_bool_subset,
matrix_bool_subset,
spmatrix_bool_subset,
]
)
def subset_func(request):
return request.param
###################
# Checking equality
###################
def format_msg(elem_name):
if elem_name is not None:
return f"Error raised from element {elem_name!r}."
else:
return ""
# TODO: it would be better to modify the other exception
def report_name(func):
"""Report name of element being tested if test fails."""
@wraps(func)
def func_wrapper(*args, _elem_name=None, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
if _elem_name is not None and not hasattr(e, "_name_attached"):
msg = format_msg(_elem_name)
args = list(e.args)
if len(args) == 0:
args = [msg]
else:
args[0] = f"{args[0]}\n\n{msg}"
e.args = tuple(args)
e._name_attached = True
raise e
return func_wrapper
@report_name
def _assert_equal(a, b):
"""Allows reporting elem name for simple assertion."""
assert a == b
@singledispatch
def assert_equal(a, b, exact=False, elem_name=None):
_assert_equal(a, b, _elem_name=elem_name)
@assert_equal.register(np.ndarray)
def assert_equal_ndarray(a, b, exact=False, elem_name=None):
b = asarray(b)
if not exact and is_numeric_dtype(a) and is_numeric_dtype(b):
assert a.shape == b.shape, format_msg(elem_name)
assert np.allclose(a, b, equal_nan=True), format_msg(elem_name)
elif ( # Structured dtype
not exact
and hasattr(a, "dtype")
and hasattr(b, "dtype")
and len(a.dtype) > 1
and len(b.dtype) > 0
):
assert_equal(pd.DataFrame(a), pd.DataFrame(b), exact, elem_name)
else:
assert np.all(a == b), format_msg(elem_name)
@assert_equal.register(ArrayView)
def assert_equal_arrayview(a, b, exact=False, elem_name=None):
assert_equal(asarray(a), asarray(b), exact=exact, elem_name=elem_name)
@assert_equal.register(SparseDataset)
@assert_equal.register(sparse.spmatrix)
def assert_equal_sparse(a, b, exact=False, elem_name=None):
a = asarray(a)
assert_equal(b, a, exact, elem_name=elem_name)
@assert_equal.register(h5py.Dataset)
def assert_equal_h5py_dataset(a, b, exact=False, elem_name=None):
a = asarray(a)
assert_equal(b, a, exact, elem_name=elem_name)
@assert_equal.register(pd.DataFrame)
def are_equal_dataframe(a, b, exact=False, elem_name=None):
if not isinstance(b, pd.DataFrame):
assert_equal(b, a, exact, elem_name) # , a.values maybe?
report_name(pd.testing.assert_frame_equal)(
a,
b,
check_index_type=exact,
check_exact=exact,
_elem_name=elem_name,
check_frame_type=False,
)
@assert_equal.register(Mapping)
def assert_equal_mapping(a, b, exact=False, elem_name=None):
assert set(a.keys()) == set(b.keys()), format_msg(elem_name)
for k in a.keys():
if elem_name is None:
elem_name = ""
assert_equal(a[k], b[k], exact, f"{elem_name}/{k}")
@assert_equal.register(AlignedMapping)
def assert_equal_aligned_mapping(a, b, exact=False, elem_name=None):
a_indices = (a.parent.obs_names, a.parent.var_names)
b_indices = (b.parent.obs_names, b.parent.var_names)
for axis_idx in a.axes:
assert_equal(
a_indices[axis_idx], b_indices[axis_idx], exact=exact, elem_name=axis_idx
)
assert a.attrname == b.attrname, format_msg(elem_name)
assert_equal_mapping(a, b, exact=exact, elem_name=elem_name)
@assert_equal.register(pd.Index)
def assert_equal_index(a, b, exact=False, elem_name=None):
if not exact:
report_name(pd.testing.assert_index_equal)(
a, b, check_names=False, check_categorical=False, _elem_name=elem_name
)
else:
report_name(pd.testing.assert_index_equal)(a, b, _elem_name=elem_name)
@assert_equal.register(AnnData)
def assert_adata_equal(a: AnnData, b: AnnData, exact: bool = False):
"""\
Check whether two AnnData objects are equivalent,
raising an AssertionError if they aren’t.
Params
------
a
b
exact
Whether comparisons should be exact or not. This has a somewhat flexible
meaning and should probably get refined in the future.
"""
# There may be issues comparing views, since np.allclose
# can modify ArrayViews if they contain `nan`s
assert_equal(a.obs_names, b.obs_names, exact, elem_name="obs_names")
assert_equal(a.var_names, b.var_names, exact, elem_name="var_names")
if not exact:
# Reorder all elements if neccesary
idx = [slice(None), slice(None)]
# Since it’s a pain to compare a list of pandas objects
change_flag = False
if not np.all(a.obs_names == b.obs_names):
idx[0] = a.obs_names
change_flag = True
if not np.all(a.var_names == b.var_names):
idx[1] = a.var_names
change_flag = True
if change_flag:
b = b[tuple(idx)].copy()
assert_equal(a.obs, b.obs, exact, elem_name="obs")
assert_equal(a.var, b.var, exact, elem_name="var")
assert_equal(a.X, b.X, exact, elem_name="X")
for mapping_attr in ["obsm", "varm", "layers", "uns", "obsp", "varp"]:
assert_equal(
getattr(a, mapping_attr),
getattr(b, mapping_attr),
exact,
elem_name=mapping_attr,
)
if a.raw is not None:
assert_equal(a.raw.X, b.raw.X, exact, elem_name="raw/X")
assert_equal(a.raw.var, b.raw.var, exact, elem_name="raw/var")
assert_equal(a.raw.varm, b.raw.varm, exact, elem_name="raw/varm")
|