1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
from itertools import product
import numpy as np
from numpy import ma
import pandas as pd
import pytest
from scipy import sparse as sp
from scipy.sparse import csr_matrix, issparse
from anndata import AnnData
from anndata.tests.helpers import assert_equal, gen_adata
# some test objects that we use below
adata_dense = AnnData(np.array([[1, 2], [3, 4]]))
adata_dense.layers["test"] = adata_dense.X
adata_sparse = AnnData(
csr_matrix([[0, 2, 3], [0, 5, 6]]),
dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]),
dict(var_names=["a", "b", "c"]),
)
def test_creation():
AnnData(np.array([[1, 2], [3, 4]]))
AnnData(np.array([[1, 2], [3, 4]]), {}, {})
AnnData(ma.array([[1, 2], [3, 4]]), uns=dict(mask=[0, 1, 1, 0]))
AnnData(sp.eye(2))
X = np.array([[1, 2, 3], [4, 5, 6]])
adata = AnnData(
X=X,
obs=dict(Obs=["A", "B"]),
var=dict(Feat=["a", "b", "c"]),
obsm=dict(X_pca=np.array([[1, 2], [3, 4]])),
raw=dict(X=X, var=dict(var_names=["a", "b", "c"])),
)
assert adata.raw.X.tolist() == X.tolist()
assert adata.raw.var_names.tolist() == ["a", "b", "c"]
with pytest.raises(ValueError):
AnnData(np.array([[1, 2], [3, 4]]), dict(TooLong=[1, 2, 3, 4]))
# init with empty data matrix
shape = (3, 5)
adata = AnnData(None, uns=dict(test=np.array((3, 3))), shape=shape)
assert adata.X is None
assert adata.shape == shape
assert "test" in adata.uns
def test_create_with_dfs():
X = np.ones((6, 3))
obs = pd.DataFrame(dict(cat_anno=pd.Categorical(["a", "a", "a", "a", "b", "a"])))
obs_copy = obs.copy()
adata = AnnData(X=X, obs=obs)
assert obs.index.equals(obs_copy.index)
assert obs.index.astype(str).equals(adata.obs.index)
def test_create_from_df():
df = pd.DataFrame(np.ones((3, 2)), index=["a", "b", "c"], columns=["A", "B"])
ad = AnnData(df)
assert df.values.tolist() == ad.X.tolist()
assert df.columns.tolist() == ad.var_names.tolist()
assert df.index.tolist() == ad.obs_names.tolist()
def test_create_from_sparse_df():
s = sp.random(20, 30, density=0.2)
obs_names = [f"obs{i}" for i in range(20)]
var_names = [f"var{i}" for i in range(30)]
df = pd.DataFrame.sparse.from_spmatrix(s, index=obs_names, columns=var_names)
a = AnnData(df)
b = AnnData(s, obs=pd.DataFrame(index=obs_names), var=pd.DataFrame(index=var_names))
assert_equal(a, b)
assert issparse(a.X)
def test_create_from_df_with_obs_and_var():
df = pd.DataFrame(np.ones((3, 2)), index=["a", "b", "c"], columns=["A", "B"])
obs = pd.DataFrame(np.ones((3, 1)), index=df.index, columns=["C"])
var = pd.DataFrame(np.ones((2, 1)), index=df.columns, columns=["D"])
ad = AnnData(df, obs=obs, var=var)
assert df.values.tolist() == ad.X.tolist()
assert df.columns.tolist() == ad.var_names.tolist()
assert df.index.tolist() == ad.obs_names.tolist()
assert obs.equals(ad.obs)
assert var.equals(ad.var)
with pytest.raises(ValueError, match=r"Index of obs must match index of X."):
AnnData(df, obs=obs.reset_index())
with pytest.raises(ValueError, match=r"Index of var must match columns of X."):
AnnData(df, var=var.reset_index())
def test_from_df_and_dict():
df = pd.DataFrame(dict(a=[0.1, 0.2, 0.3], b=[1.1, 1.2, 1.3]))
adata = AnnData(df, dict(species=pd.Categorical(["a", "b", "a"])))
assert adata.obs["species"].values.tolist() == ["a", "b", "a"]
def test_df_warnings():
df = pd.DataFrame(dict(A=[1, 2, 3], B=[1.0, 2.0, 3.0]), index=["a", "b", "c"])
with pytest.warns(UserWarning, match=r"X.*dtype float64"):
adata = AnnData(df)
with pytest.warns(UserWarning, match=r"X.*dtype float64"):
adata.X = df
def test_attr_deletion():
full = gen_adata((30, 30))
# Empty has just X, obs_names, var_names
empty = AnnData(full.X, obs=full.obs[[]], var=full.var[[]])
for attr in ["obs", "var", "obsm", "varm", "obsp", "varp", "layers", "uns"]:
delattr(full, attr)
assert_equal(getattr(full, attr), getattr(empty, attr))
assert_equal(full, empty, exact=True)
def test_names():
adata = AnnData(
np.array([[1, 2, 3], [4, 5, 6]]),
dict(obs_names=["A", "B"]),
dict(var_names=["a", "b", "c"]),
)
assert adata.obs_names.tolist() == "A B".split()
assert adata.var_names.tolist() == "a b c".split()
adata = AnnData(np.array([[1, 2], [3, 4], [5, 6]]), var=dict(var_names=["a", "b"]))
assert adata.var_names.tolist() == ["a", "b"]
@pytest.mark.parametrize(
"names,after",
[
pytest.param(["a", "b"], None, id="list"),
pytest.param(
pd.Series(["AAD", "CCA"], name="barcodes"), "barcodes", id="Series-str"
),
pytest.param(pd.Series(["x", "y"], name=0), None, id="Series-int"),
],
)
@pytest.mark.parametrize("attr", ["obs_names", "var_names"])
def test_setting_index_names(names, after, attr):
adata = adata_dense.copy()
assert getattr(adata, attr).name is None
setattr(adata, attr, names)
assert getattr(adata, attr).name == after
if hasattr(names, "name"):
assert names.name is not None
# Testing for views
new = adata[:, :]
assert new.is_view
setattr(new, attr, names)
assert_equal(new, adata, exact=True)
assert not new.is_view
@pytest.mark.parametrize("attr", ["obs_names", "var_names"])
def test_setting_index_names_error(attr):
orig = adata_sparse[:2, :2]
adata = adata_sparse[:2, :2]
assert getattr(adata, attr).name is None
with pytest.raises(ValueError, match=fr"AnnData expects \.{attr[:3]}\.index\.name"):
setattr(adata, attr, pd.Index(["x", "y"], name=0))
assert adata.is_view
assert getattr(adata, attr).tolist() != ["x", "y"]
assert getattr(adata, attr).tolist() == getattr(orig, attr).tolist()
assert_equal(orig, adata, exact=True)
@pytest.mark.parametrize("dim", ["obs", "var"])
def test_setting_dim_index(dim):
index_attr = f"{dim}_names"
mapping_attr = f"{dim}m"
orig = gen_adata((5, 5))
orig.raw = orig
curr = orig.copy()
view = orig[:, :]
new_idx = pd.Index(list("abcde"), name="letters")
setattr(curr, index_attr, new_idx)
pd.testing.assert_index_equal(getattr(curr, index_attr), new_idx)
pd.testing.assert_index_equal(getattr(curr, mapping_attr)["df"].index, new_idx)
pd.testing.assert_index_equal(curr.obs_names, curr.raw.obs_names)
# Testing view behaviour
setattr(view, index_attr, new_idx)
assert not view.is_view
pd.testing.assert_index_equal(getattr(view, index_attr), new_idx)
pd.testing.assert_index_equal(getattr(view, mapping_attr)["df"].index, new_idx)
with pytest.raises(AssertionError):
pd.testing.assert_index_equal(
getattr(view, index_attr), getattr(orig, index_attr)
)
assert_equal(view, curr, exact=True)
def test_indices_dtypes():
adata = AnnData(
np.array([[1, 2, 3], [4, 5, 6]]),
dict(obs_names=["A", "B"]),
dict(var_names=["a", "b", "c"]),
)
adata.obs_names = ["ö", "a"]
assert adata.obs_names.tolist() == ["ö", "a"]
def test_slicing():
adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))
# assert adata[:, 0].X.tolist() == adata.X[:, 0].tolist() # No longer the case
assert adata[0, 0].X.tolist() == np.reshape(1, (1, 1)).tolist()
assert adata[0, :].X.tolist() == np.reshape([1, 2, 3], (1, 3)).tolist()
assert adata[:, 0].X.tolist() == np.reshape([1, 4], (2, 1)).tolist()
assert adata[:, [0, 1]].X.tolist() == [[1, 2], [4, 5]]
assert adata[:, np.array([0, 2])].X.tolist() == [[1, 3], [4, 6]]
assert adata[:, np.array([False, True, True])].X.tolist() == [
[2, 3],
[5, 6],
]
assert adata[:, 1:3].X.tolist() == [[2, 3], [5, 6]]
assert adata[0:2, :][:, 0:2].X.tolist() == [[1, 2], [4, 5]]
assert adata[0:1, :][:, 0:2].X.tolist() == np.reshape([1, 2], (1, 2)).tolist()
assert adata[0, :][:, 0].X.tolist() == np.reshape(1, (1, 1)).tolist()
assert adata[:, 0:2][0:2, :].X.tolist() == [[1, 2], [4, 5]]
assert adata[:, 0:2][0:1, :].X.tolist() == np.reshape([1, 2], (1, 2)).tolist()
assert adata[:, 0][0, :].X.tolist() == np.reshape(1, (1, 1)).tolist()
def test_boolean_slicing():
adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))
obs_selector = np.array([True, False], dtype=bool)
vars_selector = np.array([True, False, False], dtype=bool)
assert adata[obs_selector, :][:, vars_selector].X.tolist() == [[1]]
assert adata[:, vars_selector][obs_selector, :].X.tolist() == [[1]]
assert adata[obs_selector, :][:, 0].X.tolist() == [[1]]
assert adata[:, 0][obs_selector, :].X.tolist() == [[1]]
assert adata[0, :][:, vars_selector].X.tolist() == [[1]]
assert adata[:, vars_selector][0, :].X.tolist() == [[1]]
obs_selector = np.array([True, False], dtype=bool)
vars_selector = np.array([True, True, False], dtype=bool)
assert adata[obs_selector, :][:, vars_selector].X.tolist() == [[1, 2]]
assert adata[:, vars_selector][obs_selector, :].X.tolist() == [[1, 2]]
assert adata[obs_selector, :][:, 0:2].X.tolist() == [[1, 2]]
assert adata[:, 0:2][obs_selector, :].X.tolist() == [[1, 2]]
assert adata[0, :][:, vars_selector].X.tolist() == [[1, 2]]
assert adata[:, vars_selector][0, :].X.tolist() == [[1, 2]]
obs_selector = np.array([True, True], dtype=bool)
vars_selector = np.array([True, True, False], dtype=bool)
assert adata[obs_selector, :][:, vars_selector].X.tolist() == [
[1, 2],
[4, 5],
]
assert adata[:, vars_selector][obs_selector, :].X.tolist() == [
[1, 2],
[4, 5],
]
assert adata[obs_selector, :][:, 0:2].X.tolist() == [[1, 2], [4, 5]]
assert adata[:, 0:2][obs_selector, :].X.tolist() == [[1, 2], [4, 5]]
assert adata[0:2, :][:, vars_selector].X.tolist() == [[1, 2], [4, 5]]
assert adata[:, vars_selector][0:2, :].X.tolist() == [[1, 2], [4, 5]]
def test_oob_boolean_slicing():
len1, len2 = np.random.choice(100, 2, replace=False)
with pytest.raises(IndexError) as e:
AnnData(np.empty((len1, 100)))[np.random.randint(0, 2, len2, dtype=bool), :]
assert str(len1) in str(e.value)
assert str(len2) in str(e.value)
len1, len2 = np.random.choice(100, 2, replace=False)
with pytest.raises(IndexError) as e:
AnnData(np.empty((100, len1)))[:, np.random.randint(0, 2, len2, dtype=bool)]
assert str(len1) in str(e.value)
assert str(len2) in str(e.value)
def test_slicing_strings():
adata = AnnData(
np.array([[1, 2, 3], [4, 5, 6]]),
dict(obs_names=["A", "B"]),
dict(var_names=["a", "b", "c"]),
)
assert adata["A", "a"].X.tolist() == [[1]]
assert adata["A", :].X.tolist() == [[1, 2, 3]]
assert adata[:, "a"].X.tolist() == [[1], [4]]
assert adata[:, ["a", "b"]].X.tolist() == [[1, 2], [4, 5]]
assert adata[:, np.array(["a", "c"])].X.tolist() == [[1, 3], [4, 6]]
assert adata[:, "b":"c"].X.tolist() == [[2, 3], [5, 6]]
with pytest.raises(KeyError):
_ = adata[:, "X"]
with pytest.raises(KeyError):
_ = adata["X", :]
with pytest.raises(KeyError):
_ = adata["A":"X", :]
with pytest.raises(KeyError):
_ = adata[:, "a":"X"]
# Test if errors are helpful
with pytest.raises(KeyError, match=r"not_in_var"):
adata[:, ["A", "B", "not_in_var"]]
with pytest.raises(KeyError, match=r"not_in_obs"):
adata[["A", "B", "not_in_obs"], :]
def test_slicing_graphs():
# Testing for deprecated behaviour of connectivity matrices in .uns["neighbors"]
with pytest.warns(FutureWarning, match=r".obsp\['connectivities'\]"):
adata = AnnData(
np.array([[1, 2], [3, 4], [5, 6]]),
uns=dict(neighbors=dict(connectivities=sp.csr_matrix(np.ones((3, 3))))),
)
adata_sub = adata[[0, 1], :]
with pytest.warns(FutureWarning):
assert adata_sub.uns["neighbors"]["connectivities"].shape[0] == 2
assert adata.uns["neighbors"]["connectivities"].shape[0] == 3
assert adata_sub.copy().uns["neighbors"]["connectivities"].shape[0] == 2
def test_slicing_series():
adata = AnnData(
np.array([[1, 2], [3, 4], [5, 6]]),
dict(obs_names=["A", "B", "C"]),
dict(var_names=["a", "b"]),
)
df = pd.DataFrame(dict(a=["1", "2", "2"]))
df1 = pd.DataFrame(dict(b=["1", "2"]))
assert adata[df["a"].values == "2"].X.tolist() == adata[df["a"] == "2"].X.tolist()
assert (
adata[:, df1["b"].values == "2"].X.tolist()
== adata[:, df1["b"] == "2"].X.tolist()
)
def test_strings_to_categoricals():
adata = AnnData(
np.array([[1, 2], [3, 4], [5, 6], [7, 8]]), dict(k=["a", "a", "b", "b"])
)
adata.strings_to_categoricals()
assert adata.obs["k"].cat.categories.tolist() == ["a", "b"]
def test_slicing_remove_unused_categories():
adata = AnnData(
np.array([[1, 2], [3, 4], [5, 6], [7, 8]]), dict(k=["a", "a", "b", "b"])
)
adata._sanitize()
assert adata[2:4].obs["k"].cat.categories.tolist() == ["b"]
def test_get_subset_annotation():
adata = AnnData(
np.array([[1, 2, 3], [4, 5, 6]]),
dict(S=["A", "B"]),
dict(F=["a", "b", "c"]),
)
assert adata[0, 0].obs["S"].tolist() == ["A"]
assert adata[0, 0].var["F"].tolist() == ["a"]
def test_transpose():
adata = gen_adata((5, 3))
adata.varp = {f"varp_{k}": v for k, v in adata.varp.items()}
adata1 = adata.T
adata1.uns["test123"] = 1
assert "test123" in adata.uns
assert_equal(adata1.X.shape, (3, 5))
assert_equal(adata1.obsp.keys(), adata.varp.keys())
def test_append_col():
adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))
adata.obs["new"] = [1, 2]
# this worked in the initial AnnData, but not with a dataframe
# adata.obs[['new2', 'new3']] = [['A', 'B'], ['c', 'd']]
with pytest.raises(ValueError):
adata.obs["new4"] = "far too long".split()
def test_delete_col():
adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]), dict(o1=[1, 2], o2=[3, 4]))
assert ["o1", "o2"] == adata.obs_keys()
del adata.obs["o1"]
assert ["o2"] == adata.obs_keys()
assert [3, 4] == adata.obs["o2"].tolist()
def test_set_obs():
adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))
adata.obs = pd.DataFrame(dict(a=[3, 4]))
assert adata.obs_names.tolist() == [0, 1]
with pytest.raises(ValueError):
adata.obs = pd.DataFrame(dict(a=[3, 4, 5]))
adata.obs = dict(a=[1, 2])
def test_multicol():
adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))
# 'c' keeps the columns as should be
adata.obsm["c"] = np.array([[0.0, 1.0], [2, 3]])
assert adata.obsm_keys() == ["c"]
assert adata.obsm["c"].tolist() == [[0.0, 1.0], [2, 3]]
def test_n_obs():
adata = AnnData(np.array([[1, 2], [3, 4], [5, 6]]))
assert adata.n_obs == 3
adata1 = adata[:2]
assert adata1.n_obs == 2
def test_equality_comparisons():
adata1 = AnnData(np.array([[1, 2], [3, 4], [5, 6]]))
adata2 = AnnData(np.array([[1, 2], [3, 4], [5, 6]]))
with pytest.raises(NotImplementedError):
adata1 == adata1
with pytest.raises(NotImplementedError):
adata1 == adata2
with pytest.raises(NotImplementedError):
adata1 != adata2
with pytest.raises(NotImplementedError):
adata1 == 1
with pytest.raises(NotImplementedError):
adata1 != 1
def test_rename_categories():
X = np.ones((6, 3))
obs = pd.DataFrame(dict(cat_anno=pd.Categorical(["a", "a", "a", "a", "b", "a"])))
adata = AnnData(X=X, obs=obs)
adata.uns["tool"] = {}
adata.uns["tool"]["cat_array"] = np.rec.fromarrays(
[np.ones(2) for cat in adata.obs["cat_anno"].cat.categories],
dtype=[(cat, "float32") for cat in adata.obs["cat_anno"].cat.categories],
)
adata.uns["tool"]["params"] = dict(groupby="cat_anno")
new_categories = ["c", "d"]
adata.rename_categories("cat_anno", new_categories)
assert list(adata.obs["cat_anno"].cat.categories) == new_categories
assert list(adata.uns["tool"]["cat_array"].dtype.names) == new_categories
def test_pickle():
import pickle
adata = AnnData()
adata2 = pickle.loads(pickle.dumps(adata))
assert adata2.obsm.parent is adata2
def test_to_df_dense():
df = adata_dense.to_df()
df = adata_dense.to_df(layer="test")
def test_convenience():
adata = adata_sparse.copy()
adata.layers["x2"] = adata.X * 2
adata.var["anno2"] = ["p1", "p2", "p3"]
adata.raw = adata
adata.X = adata.X / 2
adata_dense = adata.copy()
adata_dense.X = adata_dense.X.toarray()
def assert_same_op_result(a1, a2, op):
r1 = op(a1)
r2 = op(a2)
assert np.all(r1 == r2)
assert type(r1) is type(r2)
assert np.allclose(adata.obs_vector("b"), np.array([1.0, 2.5]))
assert np.allclose(adata.raw.obs_vector("c"), np.array([3, 6]))
assert np.all(adata.obs_vector("anno1") == np.array(["c1", "c2"]))
assert np.allclose(adata.var_vector("s1"), np.array([0, 1.0, 1.5]))
assert np.allclose(adata.raw.var_vector("s2"), np.array([0, 5, 6]))
for obs_k, layer in product(["a", "b", "c", "anno1"], [None, "x2"]):
assert_same_op_result(
adata, adata_dense, lambda x: x.obs_vector(obs_k, layer=layer)
)
for obs_k in ["a", "b", "c"]:
assert_same_op_result(adata, adata_dense, lambda x: x.raw.obs_vector(obs_k))
for var_k, layer in product(["s1", "s2", "anno2"], [None, "x2"]):
assert_same_op_result(
adata, adata_dense, lambda x: x.var_vector(var_k, layer=layer)
)
for var_k in ["s1", "s2", "anno2"]:
assert_same_op_result(adata, adata_dense, lambda x: x.raw.var_vector(var_k))
def test_1d_slice_dtypes():
N, M = 10, 20
obs_df = pd.DataFrame(
dict(
cat=pd.Categorical(np.arange(N, dtype=int)),
int=np.arange(N, dtype=int),
float=np.arange(N, dtype=float),
obj=[str(i) for i in np.arange(N, dtype=int)],
),
index=[f"cell{i}" for i in np.arange(N, dtype=int)],
)
var_df = pd.DataFrame(
dict(
cat=pd.Categorical(np.arange(M, dtype=int)),
int=np.arange(M, dtype=int),
float=np.arange(M, dtype=float),
obj=[str(i) for i in np.arange(M, dtype=int)],
),
index=[f"gene{i}" for i in np.arange(M, dtype=int)],
)
adata = AnnData(X=np.random.random((N, M)), obs=obs_df, var=var_df)
new_obs_df = pd.DataFrame(index=adata.obs_names)
for k in obs_df.columns:
new_obs_df[k] = adata.obs_vector(k)
assert new_obs_df[k].dtype == obs_df[k].dtype
assert np.all(new_obs_df == obs_df)
new_var_df = pd.DataFrame(index=adata.var_names)
for k in var_df.columns:
new_var_df[k] = adata.var_vector(k)
assert new_var_df[k].dtype == var_df[k].dtype
assert np.all(new_var_df == var_df)
def test_to_df_sparse():
X = adata_sparse.X.toarray()
df = adata_sparse.to_df()
assert df.values.tolist() == X.tolist()
def test_copy():
adata_copy = adata_sparse.copy()
def assert_eq_not_id(a, b):
assert a is not b
assert issparse(a) == issparse(b)
if issparse(a):
assert np.all(a.data == b.data)
assert np.all(a.indices == b.indices)
assert np.all(a.indptr == b.indptr)
else:
assert np.all(a == b)
assert adata_sparse is not adata_copy
assert_eq_not_id(adata_sparse.X, adata_copy.X)
for attr in "layers var obs obsm varm".split():
map_sprs = getattr(adata_sparse, attr)
map_copy = getattr(adata_copy, attr)
assert map_sprs is not map_copy
assert_eq_not_id(map_sprs.keys(), map_copy.keys())
for key in map_sprs.keys():
assert_eq_not_id(map_sprs[key], map_copy[key])
|