File: test_base.py

package info (click to toggle)
python-anndata 0.7.5%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 628 kB
  • sloc: python: 7,779; makefile: 8
file content (577 lines) | stat: -rw-r--r-- 20,047 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
from itertools import product

import numpy as np
from numpy import ma
import pandas as pd
import pytest
from scipy import sparse as sp
from scipy.sparse import csr_matrix, issparse

from anndata import AnnData
from anndata.tests.helpers import assert_equal, gen_adata


# some test objects that we use below
adata_dense = AnnData(np.array([[1, 2], [3, 4]]))
adata_dense.layers["test"] = adata_dense.X
adata_sparse = AnnData(
    csr_matrix([[0, 2, 3], [0, 5, 6]]),
    dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]),
    dict(var_names=["a", "b", "c"]),
)


def test_creation():
    AnnData(np.array([[1, 2], [3, 4]]))
    AnnData(np.array([[1, 2], [3, 4]]), {}, {})
    AnnData(ma.array([[1, 2], [3, 4]]), uns=dict(mask=[0, 1, 1, 0]))
    AnnData(sp.eye(2))
    X = np.array([[1, 2, 3], [4, 5, 6]])
    adata = AnnData(
        X=X,
        obs=dict(Obs=["A", "B"]),
        var=dict(Feat=["a", "b", "c"]),
        obsm=dict(X_pca=np.array([[1, 2], [3, 4]])),
        raw=dict(X=X, var=dict(var_names=["a", "b", "c"])),
    )

    assert adata.raw.X.tolist() == X.tolist()
    assert adata.raw.var_names.tolist() == ["a", "b", "c"]

    with pytest.raises(ValueError):
        AnnData(np.array([[1, 2], [3, 4]]), dict(TooLong=[1, 2, 3, 4]))

    # init with empty data matrix
    shape = (3, 5)
    adata = AnnData(None, uns=dict(test=np.array((3, 3))), shape=shape)
    assert adata.X is None
    assert adata.shape == shape
    assert "test" in adata.uns


def test_create_with_dfs():
    X = np.ones((6, 3))
    obs = pd.DataFrame(dict(cat_anno=pd.Categorical(["a", "a", "a", "a", "b", "a"])))
    obs_copy = obs.copy()
    adata = AnnData(X=X, obs=obs)
    assert obs.index.equals(obs_copy.index)
    assert obs.index.astype(str).equals(adata.obs.index)


def test_create_from_df():
    df = pd.DataFrame(np.ones((3, 2)), index=["a", "b", "c"], columns=["A", "B"])
    ad = AnnData(df)
    assert df.values.tolist() == ad.X.tolist()
    assert df.columns.tolist() == ad.var_names.tolist()
    assert df.index.tolist() == ad.obs_names.tolist()


def test_create_from_sparse_df():
    s = sp.random(20, 30, density=0.2)
    obs_names = [f"obs{i}" for i in range(20)]
    var_names = [f"var{i}" for i in range(30)]
    df = pd.DataFrame.sparse.from_spmatrix(s, index=obs_names, columns=var_names)
    a = AnnData(df)
    b = AnnData(s, obs=pd.DataFrame(index=obs_names), var=pd.DataFrame(index=var_names))
    assert_equal(a, b)
    assert issparse(a.X)


def test_create_from_df_with_obs_and_var():
    df = pd.DataFrame(np.ones((3, 2)), index=["a", "b", "c"], columns=["A", "B"])
    obs = pd.DataFrame(np.ones((3, 1)), index=df.index, columns=["C"])
    var = pd.DataFrame(np.ones((2, 1)), index=df.columns, columns=["D"])
    ad = AnnData(df, obs=obs, var=var)
    assert df.values.tolist() == ad.X.tolist()
    assert df.columns.tolist() == ad.var_names.tolist()
    assert df.index.tolist() == ad.obs_names.tolist()
    assert obs.equals(ad.obs)
    assert var.equals(ad.var)

    with pytest.raises(ValueError, match=r"Index of obs must match index of X."):
        AnnData(df, obs=obs.reset_index())
    with pytest.raises(ValueError, match=r"Index of var must match columns of X."):
        AnnData(df, var=var.reset_index())


def test_from_df_and_dict():
    df = pd.DataFrame(dict(a=[0.1, 0.2, 0.3], b=[1.1, 1.2, 1.3]))
    adata = AnnData(df, dict(species=pd.Categorical(["a", "b", "a"])))
    assert adata.obs["species"].values.tolist() == ["a", "b", "a"]


def test_df_warnings():
    df = pd.DataFrame(dict(A=[1, 2, 3], B=[1.0, 2.0, 3.0]), index=["a", "b", "c"])
    with pytest.warns(UserWarning, match=r"X.*dtype float64"):
        adata = AnnData(df)
    with pytest.warns(UserWarning, match=r"X.*dtype float64"):
        adata.X = df


def test_attr_deletion():
    full = gen_adata((30, 30))
    # Empty has just X, obs_names, var_names
    empty = AnnData(full.X, obs=full.obs[[]], var=full.var[[]])
    for attr in ["obs", "var", "obsm", "varm", "obsp", "varp", "layers", "uns"]:
        delattr(full, attr)
        assert_equal(getattr(full, attr), getattr(empty, attr))
    assert_equal(full, empty, exact=True)


def test_names():
    adata = AnnData(
        np.array([[1, 2, 3], [4, 5, 6]]),
        dict(obs_names=["A", "B"]),
        dict(var_names=["a", "b", "c"]),
    )

    assert adata.obs_names.tolist() == "A B".split()
    assert adata.var_names.tolist() == "a b c".split()

    adata = AnnData(np.array([[1, 2], [3, 4], [5, 6]]), var=dict(var_names=["a", "b"]))
    assert adata.var_names.tolist() == ["a", "b"]


@pytest.mark.parametrize(
    "names,after",
    [
        pytest.param(["a", "b"], None, id="list"),
        pytest.param(
            pd.Series(["AAD", "CCA"], name="barcodes"), "barcodes", id="Series-str"
        ),
        pytest.param(pd.Series(["x", "y"], name=0), None, id="Series-int"),
    ],
)
@pytest.mark.parametrize("attr", ["obs_names", "var_names"])
def test_setting_index_names(names, after, attr):
    adata = adata_dense.copy()
    assert getattr(adata, attr).name is None
    setattr(adata, attr, names)
    assert getattr(adata, attr).name == after
    if hasattr(names, "name"):
        assert names.name is not None

    # Testing for views
    new = adata[:, :]
    assert new.is_view
    setattr(new, attr, names)
    assert_equal(new, adata, exact=True)
    assert not new.is_view


@pytest.mark.parametrize("attr", ["obs_names", "var_names"])
def test_setting_index_names_error(attr):
    orig = adata_sparse[:2, :2]
    adata = adata_sparse[:2, :2]
    assert getattr(adata, attr).name is None
    with pytest.raises(ValueError, match=fr"AnnData expects \.{attr[:3]}\.index\.name"):
        setattr(adata, attr, pd.Index(["x", "y"], name=0))
    assert adata.is_view
    assert getattr(adata, attr).tolist() != ["x", "y"]
    assert getattr(adata, attr).tolist() == getattr(orig, attr).tolist()
    assert_equal(orig, adata, exact=True)


@pytest.mark.parametrize("dim", ["obs", "var"])
def test_setting_dim_index(dim):
    index_attr = f"{dim}_names"
    mapping_attr = f"{dim}m"

    orig = gen_adata((5, 5))
    orig.raw = orig
    curr = orig.copy()
    view = orig[:, :]
    new_idx = pd.Index(list("abcde"), name="letters")

    setattr(curr, index_attr, new_idx)
    pd.testing.assert_index_equal(getattr(curr, index_attr), new_idx)
    pd.testing.assert_index_equal(getattr(curr, mapping_attr)["df"].index, new_idx)
    pd.testing.assert_index_equal(curr.obs_names, curr.raw.obs_names)

    # Testing view behaviour
    setattr(view, index_attr, new_idx)
    assert not view.is_view
    pd.testing.assert_index_equal(getattr(view, index_attr), new_idx)
    pd.testing.assert_index_equal(getattr(view, mapping_attr)["df"].index, new_idx)
    with pytest.raises(AssertionError):
        pd.testing.assert_index_equal(
            getattr(view, index_attr), getattr(orig, index_attr)
        )
    assert_equal(view, curr, exact=True)


def test_indices_dtypes():
    adata = AnnData(
        np.array([[1, 2, 3], [4, 5, 6]]),
        dict(obs_names=["A", "B"]),
        dict(var_names=["a", "b", "c"]),
    )
    adata.obs_names = ["ö", "a"]
    assert adata.obs_names.tolist() == ["ö", "a"]


def test_slicing():
    adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))

    # assert adata[:, 0].X.tolist() == adata.X[:, 0].tolist()  # No longer the case

    assert adata[0, 0].X.tolist() == np.reshape(1, (1, 1)).tolist()
    assert adata[0, :].X.tolist() == np.reshape([1, 2, 3], (1, 3)).tolist()
    assert adata[:, 0].X.tolist() == np.reshape([1, 4], (2, 1)).tolist()

    assert adata[:, [0, 1]].X.tolist() == [[1, 2], [4, 5]]
    assert adata[:, np.array([0, 2])].X.tolist() == [[1, 3], [4, 6]]
    assert adata[:, np.array([False, True, True])].X.tolist() == [
        [2, 3],
        [5, 6],
    ]
    assert adata[:, 1:3].X.tolist() == [[2, 3], [5, 6]]

    assert adata[0:2, :][:, 0:2].X.tolist() == [[1, 2], [4, 5]]
    assert adata[0:1, :][:, 0:2].X.tolist() == np.reshape([1, 2], (1, 2)).tolist()
    assert adata[0, :][:, 0].X.tolist() == np.reshape(1, (1, 1)).tolist()
    assert adata[:, 0:2][0:2, :].X.tolist() == [[1, 2], [4, 5]]
    assert adata[:, 0:2][0:1, :].X.tolist() == np.reshape([1, 2], (1, 2)).tolist()
    assert adata[:, 0][0, :].X.tolist() == np.reshape(1, (1, 1)).tolist()


def test_boolean_slicing():
    adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))

    obs_selector = np.array([True, False], dtype=bool)
    vars_selector = np.array([True, False, False], dtype=bool)
    assert adata[obs_selector, :][:, vars_selector].X.tolist() == [[1]]
    assert adata[:, vars_selector][obs_selector, :].X.tolist() == [[1]]
    assert adata[obs_selector, :][:, 0].X.tolist() == [[1]]
    assert adata[:, 0][obs_selector, :].X.tolist() == [[1]]
    assert adata[0, :][:, vars_selector].X.tolist() == [[1]]
    assert adata[:, vars_selector][0, :].X.tolist() == [[1]]

    obs_selector = np.array([True, False], dtype=bool)
    vars_selector = np.array([True, True, False], dtype=bool)
    assert adata[obs_selector, :][:, vars_selector].X.tolist() == [[1, 2]]
    assert adata[:, vars_selector][obs_selector, :].X.tolist() == [[1, 2]]
    assert adata[obs_selector, :][:, 0:2].X.tolist() == [[1, 2]]
    assert adata[:, 0:2][obs_selector, :].X.tolist() == [[1, 2]]
    assert adata[0, :][:, vars_selector].X.tolist() == [[1, 2]]
    assert adata[:, vars_selector][0, :].X.tolist() == [[1, 2]]

    obs_selector = np.array([True, True], dtype=bool)
    vars_selector = np.array([True, True, False], dtype=bool)
    assert adata[obs_selector, :][:, vars_selector].X.tolist() == [
        [1, 2],
        [4, 5],
    ]
    assert adata[:, vars_selector][obs_selector, :].X.tolist() == [
        [1, 2],
        [4, 5],
    ]
    assert adata[obs_selector, :][:, 0:2].X.tolist() == [[1, 2], [4, 5]]
    assert adata[:, 0:2][obs_selector, :].X.tolist() == [[1, 2], [4, 5]]
    assert adata[0:2, :][:, vars_selector].X.tolist() == [[1, 2], [4, 5]]
    assert adata[:, vars_selector][0:2, :].X.tolist() == [[1, 2], [4, 5]]


def test_oob_boolean_slicing():
    len1, len2 = np.random.choice(100, 2, replace=False)
    with pytest.raises(IndexError) as e:
        AnnData(np.empty((len1, 100)))[np.random.randint(0, 2, len2, dtype=bool), :]
    assert str(len1) in str(e.value)
    assert str(len2) in str(e.value)

    len1, len2 = np.random.choice(100, 2, replace=False)
    with pytest.raises(IndexError) as e:
        AnnData(np.empty((100, len1)))[:, np.random.randint(0, 2, len2, dtype=bool)]
    assert str(len1) in str(e.value)
    assert str(len2) in str(e.value)


def test_slicing_strings():
    adata = AnnData(
        np.array([[1, 2, 3], [4, 5, 6]]),
        dict(obs_names=["A", "B"]),
        dict(var_names=["a", "b", "c"]),
    )

    assert adata["A", "a"].X.tolist() == [[1]]
    assert adata["A", :].X.tolist() == [[1, 2, 3]]
    assert adata[:, "a"].X.tolist() == [[1], [4]]
    assert adata[:, ["a", "b"]].X.tolist() == [[1, 2], [4, 5]]
    assert adata[:, np.array(["a", "c"])].X.tolist() == [[1, 3], [4, 6]]
    assert adata[:, "b":"c"].X.tolist() == [[2, 3], [5, 6]]

    with pytest.raises(KeyError):
        _ = adata[:, "X"]
    with pytest.raises(KeyError):
        _ = adata["X", :]
    with pytest.raises(KeyError):
        _ = adata["A":"X", :]
    with pytest.raises(KeyError):
        _ = adata[:, "a":"X"]

    # Test if errors are helpful
    with pytest.raises(KeyError, match=r"not_in_var"):
        adata[:, ["A", "B", "not_in_var"]]
    with pytest.raises(KeyError, match=r"not_in_obs"):
        adata[["A", "B", "not_in_obs"], :]


def test_slicing_graphs():
    # Testing for deprecated behaviour of connectivity matrices in .uns["neighbors"]
    with pytest.warns(FutureWarning, match=r".obsp\['connectivities'\]"):
        adata = AnnData(
            np.array([[1, 2], [3, 4], [5, 6]]),
            uns=dict(neighbors=dict(connectivities=sp.csr_matrix(np.ones((3, 3))))),
        )

    adata_sub = adata[[0, 1], :]
    with pytest.warns(FutureWarning):
        assert adata_sub.uns["neighbors"]["connectivities"].shape[0] == 2
        assert adata.uns["neighbors"]["connectivities"].shape[0] == 3
        assert adata_sub.copy().uns["neighbors"]["connectivities"].shape[0] == 2


def test_slicing_series():
    adata = AnnData(
        np.array([[1, 2], [3, 4], [5, 6]]),
        dict(obs_names=["A", "B", "C"]),
        dict(var_names=["a", "b"]),
    )
    df = pd.DataFrame(dict(a=["1", "2", "2"]))
    df1 = pd.DataFrame(dict(b=["1", "2"]))
    assert adata[df["a"].values == "2"].X.tolist() == adata[df["a"] == "2"].X.tolist()
    assert (
        adata[:, df1["b"].values == "2"].X.tolist()
        == adata[:, df1["b"] == "2"].X.tolist()
    )


def test_strings_to_categoricals():
    adata = AnnData(
        np.array([[1, 2], [3, 4], [5, 6], [7, 8]]), dict(k=["a", "a", "b", "b"])
    )
    adata.strings_to_categoricals()
    assert adata.obs["k"].cat.categories.tolist() == ["a", "b"]


def test_slicing_remove_unused_categories():
    adata = AnnData(
        np.array([[1, 2], [3, 4], [5, 6], [7, 8]]), dict(k=["a", "a", "b", "b"])
    )
    adata._sanitize()
    assert adata[2:4].obs["k"].cat.categories.tolist() == ["b"]


def test_get_subset_annotation():
    adata = AnnData(
        np.array([[1, 2, 3], [4, 5, 6]]),
        dict(S=["A", "B"]),
        dict(F=["a", "b", "c"]),
    )

    assert adata[0, 0].obs["S"].tolist() == ["A"]
    assert adata[0, 0].var["F"].tolist() == ["a"]


def test_transpose():
    adata = gen_adata((5, 3))
    adata.varp = {f"varp_{k}": v for k, v in adata.varp.items()}
    adata1 = adata.T
    adata1.uns["test123"] = 1
    assert "test123" in adata.uns
    assert_equal(adata1.X.shape, (3, 5))
    assert_equal(adata1.obsp.keys(), adata.varp.keys())


def test_append_col():
    adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))

    adata.obs["new"] = [1, 2]
    # this worked in the initial AnnData, but not with a dataframe
    # adata.obs[['new2', 'new3']] = [['A', 'B'], ['c', 'd']]

    with pytest.raises(ValueError):
        adata.obs["new4"] = "far too long".split()


def test_delete_col():
    adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]), dict(o1=[1, 2], o2=[3, 4]))
    assert ["o1", "o2"] == adata.obs_keys()

    del adata.obs["o1"]
    assert ["o2"] == adata.obs_keys()
    assert [3, 4] == adata.obs["o2"].tolist()


def test_set_obs():
    adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))

    adata.obs = pd.DataFrame(dict(a=[3, 4]))
    assert adata.obs_names.tolist() == [0, 1]

    with pytest.raises(ValueError):
        adata.obs = pd.DataFrame(dict(a=[3, 4, 5]))
        adata.obs = dict(a=[1, 2])


def test_multicol():
    adata = AnnData(np.array([[1, 2, 3], [4, 5, 6]]))
    # 'c' keeps the columns as should be
    adata.obsm["c"] = np.array([[0.0, 1.0], [2, 3]])
    assert adata.obsm_keys() == ["c"]
    assert adata.obsm["c"].tolist() == [[0.0, 1.0], [2, 3]]


def test_n_obs():
    adata = AnnData(np.array([[1, 2], [3, 4], [5, 6]]))
    assert adata.n_obs == 3
    adata1 = adata[:2]
    assert adata1.n_obs == 2


def test_equality_comparisons():
    adata1 = AnnData(np.array([[1, 2], [3, 4], [5, 6]]))
    adata2 = AnnData(np.array([[1, 2], [3, 4], [5, 6]]))
    with pytest.raises(NotImplementedError):
        adata1 == adata1
    with pytest.raises(NotImplementedError):
        adata1 == adata2
    with pytest.raises(NotImplementedError):
        adata1 != adata2
    with pytest.raises(NotImplementedError):
        adata1 == 1
    with pytest.raises(NotImplementedError):
        adata1 != 1


def test_rename_categories():
    X = np.ones((6, 3))
    obs = pd.DataFrame(dict(cat_anno=pd.Categorical(["a", "a", "a", "a", "b", "a"])))
    adata = AnnData(X=X, obs=obs)
    adata.uns["tool"] = {}
    adata.uns["tool"]["cat_array"] = np.rec.fromarrays(
        [np.ones(2) for cat in adata.obs["cat_anno"].cat.categories],
        dtype=[(cat, "float32") for cat in adata.obs["cat_anno"].cat.categories],
    )
    adata.uns["tool"]["params"] = dict(groupby="cat_anno")

    new_categories = ["c", "d"]
    adata.rename_categories("cat_anno", new_categories)

    assert list(adata.obs["cat_anno"].cat.categories) == new_categories
    assert list(adata.uns["tool"]["cat_array"].dtype.names) == new_categories


def test_pickle():
    import pickle

    adata = AnnData()
    adata2 = pickle.loads(pickle.dumps(adata))
    assert adata2.obsm.parent is adata2


def test_to_df_dense():
    df = adata_dense.to_df()
    df = adata_dense.to_df(layer="test")


def test_convenience():
    adata = adata_sparse.copy()
    adata.layers["x2"] = adata.X * 2
    adata.var["anno2"] = ["p1", "p2", "p3"]
    adata.raw = adata
    adata.X = adata.X / 2
    adata_dense = adata.copy()
    adata_dense.X = adata_dense.X.toarray()

    def assert_same_op_result(a1, a2, op):
        r1 = op(a1)
        r2 = op(a2)
        assert np.all(r1 == r2)
        assert type(r1) is type(r2)

    assert np.allclose(adata.obs_vector("b"), np.array([1.0, 2.5]))
    assert np.allclose(adata.raw.obs_vector("c"), np.array([3, 6]))
    assert np.all(adata.obs_vector("anno1") == np.array(["c1", "c2"]))
    assert np.allclose(adata.var_vector("s1"), np.array([0, 1.0, 1.5]))
    assert np.allclose(adata.raw.var_vector("s2"), np.array([0, 5, 6]))

    for obs_k, layer in product(["a", "b", "c", "anno1"], [None, "x2"]):
        assert_same_op_result(
            adata, adata_dense, lambda x: x.obs_vector(obs_k, layer=layer)
        )

    for obs_k in ["a", "b", "c"]:
        assert_same_op_result(adata, adata_dense, lambda x: x.raw.obs_vector(obs_k))

    for var_k, layer in product(["s1", "s2", "anno2"], [None, "x2"]):
        assert_same_op_result(
            adata, adata_dense, lambda x: x.var_vector(var_k, layer=layer)
        )

    for var_k in ["s1", "s2", "anno2"]:
        assert_same_op_result(adata, adata_dense, lambda x: x.raw.var_vector(var_k))


def test_1d_slice_dtypes():
    N, M = 10, 20
    obs_df = pd.DataFrame(
        dict(
            cat=pd.Categorical(np.arange(N, dtype=int)),
            int=np.arange(N, dtype=int),
            float=np.arange(N, dtype=float),
            obj=[str(i) for i in np.arange(N, dtype=int)],
        ),
        index=[f"cell{i}" for i in np.arange(N, dtype=int)],
    )
    var_df = pd.DataFrame(
        dict(
            cat=pd.Categorical(np.arange(M, dtype=int)),
            int=np.arange(M, dtype=int),
            float=np.arange(M, dtype=float),
            obj=[str(i) for i in np.arange(M, dtype=int)],
        ),
        index=[f"gene{i}" for i in np.arange(M, dtype=int)],
    )
    adata = AnnData(X=np.random.random((N, M)), obs=obs_df, var=var_df)

    new_obs_df = pd.DataFrame(index=adata.obs_names)
    for k in obs_df.columns:
        new_obs_df[k] = adata.obs_vector(k)
        assert new_obs_df[k].dtype == obs_df[k].dtype
    assert np.all(new_obs_df == obs_df)
    new_var_df = pd.DataFrame(index=adata.var_names)
    for k in var_df.columns:
        new_var_df[k] = adata.var_vector(k)
        assert new_var_df[k].dtype == var_df[k].dtype
    assert np.all(new_var_df == var_df)


def test_to_df_sparse():
    X = adata_sparse.X.toarray()
    df = adata_sparse.to_df()
    assert df.values.tolist() == X.tolist()


def test_copy():
    adata_copy = adata_sparse.copy()

    def assert_eq_not_id(a, b):
        assert a is not b
        assert issparse(a) == issparse(b)
        if issparse(a):
            assert np.all(a.data == b.data)
            assert np.all(a.indices == b.indices)
            assert np.all(a.indptr == b.indptr)
        else:
            assert np.all(a == b)

    assert adata_sparse is not adata_copy
    assert_eq_not_id(adata_sparse.X, adata_copy.X)
    for attr in "layers var obs obsm varm".split():
        map_sprs = getattr(adata_sparse, attr)
        map_copy = getattr(adata_copy, attr)
        assert map_sprs is not map_copy
        assert_eq_not_id(map_sprs.keys(), map_copy.keys())
        for key in map_sprs.keys():
            assert_eq_not_id(map_sprs[key], map_copy[key])