1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
|
from collections.abc import Hashable
from copy import deepcopy
from itertools import chain, product
from functools import partial
import warnings
import numpy as np
from numpy import ma
import pandas as pd
from pandas.api.types import is_categorical_dtype
import pytest
from scipy import sparse
from boltons.iterutils import research, remap, default_exit
from anndata import AnnData, Raw, concat
from anndata._core.index import _subset
from anndata._core import merge
from anndata.tests import helpers
from anndata.tests.helpers import assert_equal, gen_adata
from anndata.utils import asarray
@pytest.fixture(
params=[asarray, sparse.csr_matrix, sparse.csc_matrix],
ids=["np_array", "scipy_csr", "scipy_csc"],
)
def array_type(request):
return request.param
@pytest.fixture(params=["inner", "outer"])
def join_type(request):
return request.param
@pytest.fixture(params=[0, np.nan, np.pi])
def fill_val(request):
return request.param
@pytest.fixture(params=[0, 1])
def axis(request):
return request.param
@pytest.fixture(params=list(merge.MERGE_STRATEGIES.keys()))
def merge_strategy(request):
return request.param
def fix_known_differences(orig, result, backwards_compat=True):
"""
Helper function for reducing anndata's to only the elements we expect to be
equivalent after concatenation.
Only for the case where orig is the ground truth result of what concatenation should be.
If backwards_compat, checks against what `AnnData.concatenate` could do. Otherwise checks for `concat`.
"""
orig = orig.copy()
result = result.copy()
result.strings_to_categoricals() # Should this be implicit in concatenation?
# TODO
# * merge varm, varp similar to uns
# * merge obsp, but some information should be lost
del orig.obsp # TODO
if backwards_compat:
del orig.varm
del orig.varp
result.obs.drop(columns=["batch"], inplace=True)
# Possibly need to fix this, ordered categoricals lose orderedness
for k, dtype in orig.obs.dtypes.items():
if is_categorical_dtype(dtype) and dtype.ordered:
result.obs[k] = result.obs[k].astype(dtype)
return orig, result
@pytest.mark.parametrize(
["concat_func", "backwards_compat"],
[
(partial(concat, merge="unique"), False),
(lambda x, **kwargs: x[0].concatenate(x[1:], **kwargs), True),
],
)
def test_concatenate_roundtrip(join_type, array_type, concat_func, backwards_compat):
adata = gen_adata((100, 10), X_type=array_type)
remaining = adata.obs_names
subsets = []
while len(remaining) > 0:
n = min(len(remaining), np.random.choice(50))
subset_idx = np.random.choice(remaining, n, replace=False)
subsets.append(adata[subset_idx])
remaining = remaining.difference(subset_idx)
result = concat_func(subsets, join=join_type, uns_merge="same", index_unique=None)
# Correcting for known differences
orig, result = fix_known_differences(
adata, result, backwards_compat=backwards_compat
)
assert_equal(result[orig.obs_names].copy(), orig)
def test_concatenate_dense():
# dense data
X1 = np.array([[1, 2, 3], [4, 5, 6]])
X2 = np.array([[1, 2, 3], [4, 5, 6]])
X3 = np.array([[1, 2, 3], [4, 5, 6]])
adata1 = AnnData(
X1,
dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]),
dict(var_names=["a", "b", "c"], annoA=[0, 1, 2]),
obsm=dict(X_1=X1, X_2=X2, X_3=X3),
layers=dict(Xs=X1),
)
adata2 = AnnData(
X2,
dict(obs_names=["s3", "s4"], anno1=["c3", "c4"]),
dict(var_names=["d", "c", "b"], annoA=[0, 1, 2]),
obsm=dict(X_1=X1, X_2=X2, X_3=X3),
layers={"Xs": X2},
)
adata3 = AnnData(
X3,
dict(obs_names=["s1", "s2"], anno2=["d3", "d4"]),
dict(var_names=["d", "c", "b"], annoB=[0, 1, 2]),
obsm=dict(X_1=X1, X_2=X2),
layers=dict(Xs=X3),
)
# inner join
adata = adata1.concatenate(adata2, adata3)
X_combined = [[2, 3], [5, 6], [3, 2], [6, 5], [3, 2], [6, 5]]
assert adata.X.astype(int).tolist() == X_combined
assert adata.layers["Xs"].astype(int).tolist() == X_combined
assert adata.obs_keys() == ["anno1", "anno2", "batch"]
assert adata.var_keys() == ["annoA-0", "annoA-1", "annoB-2"]
assert adata.var.values.tolist() == [[1, 2, 2], [2, 1, 1]]
assert adata.obsm_keys() == ["X_1", "X_2"]
assert adata.obsm["X_1"].tolist() == np.concatenate([X1, X1, X1]).tolist()
# with batch_key and batch_categories
adata = adata1.concatenate(adata2, adata3, batch_key="batch1")
assert adata.obs_keys() == ["anno1", "anno2", "batch1"]
adata = adata1.concatenate(adata2, adata3, batch_categories=["a1", "a2", "a3"])
assert adata.obs["batch"].cat.categories.tolist() == ["a1", "a2", "a3"]
assert adata.var_names.tolist() == ["b", "c"]
# outer join
adata = adata1.concatenate(adata2, adata3, join="outer")
X_ref = np.array(
[
[1.0, 2.0, 3.0, np.nan],
[4.0, 5.0, 6.0, np.nan],
[np.nan, 3.0, 2.0, 1.0],
[np.nan, 6.0, 5.0, 4.0],
[np.nan, 3.0, 2.0, 1.0],
[np.nan, 6.0, 5.0, 4.0],
]
)
np.testing.assert_equal(adata.X, X_ref)
var_ma = ma.masked_invalid(adata.var.values.tolist())
var_ma_ref = ma.masked_invalid(
np.array(
[
[0.0, np.nan, np.nan],
[1.0, 2.0, 2.0],
[2.0, 1.0, 1.0],
[np.nan, 0.0, 0.0],
]
)
)
assert np.array_equal(var_ma.mask, var_ma_ref.mask)
assert np.allclose(var_ma.compressed(), var_ma_ref.compressed())
def test_concatenate_layers(array_type, join_type):
adatas = []
for _ in range(5):
a = array_type(sparse.random(100, 200, format="csr"))
adatas.append(AnnData(X=a, layers={"a": a}))
merged = adatas[0].concatenate(adatas[1:], join=join_type)
assert_equal(merged.X, merged.layers["a"])
@pytest.fixture
def obsm_adatas():
def gen_index(n):
return [f"cell{i}" for i in range(n)]
return [
AnnData(
X=sparse.csr_matrix((3, 5)),
obs=pd.DataFrame(index=gen_index(3)),
obsm={
"dense": np.arange(6).reshape(3, 2),
"sparse": sparse.csr_matrix(np.arange(6).reshape(3, 2)),
"df": pd.DataFrame(
{
"a": np.arange(3),
"b": list("abc"),
"c": pd.Categorical(list("aab")),
},
index=gen_index(3),
),
},
),
AnnData(
X=sparse.csr_matrix((4, 10)),
obs=pd.DataFrame(index=gen_index(4)),
obsm=dict(
dense=np.arange(12).reshape(4, 3),
df=pd.DataFrame(dict(a=np.arange(3, 7)), index=gen_index(4)),
),
),
AnnData(
X=sparse.csr_matrix((2, 100)),
obs=pd.DataFrame(index=gen_index(2)),
obsm={
"sparse": np.arange(8).reshape(2, 4),
"dense": np.arange(4, 8).reshape(2, 2),
"df": pd.DataFrame(
{
"a": np.arange(7, 9),
"b": list("cd"),
"c": pd.Categorical(list("ab")),
},
index=gen_index(2),
),
},
),
]
def test_concatenate_obsm_inner(obsm_adatas):
adata = obsm_adatas[0].concatenate(obsm_adatas[1:], join="inner")
assert set(adata.obsm.keys()) == {"dense", "df"}
assert adata.obsm["dense"].shape == (9, 2)
assert adata.obsm["dense"].tolist() == [
[0, 1],
[2, 3],
[4, 5],
[0, 1],
[3, 4],
[6, 7],
[9, 10],
[4, 5],
[6, 7],
]
assert adata.obsm["df"].columns == ["a"]
assert adata.obsm["df"]["a"].tolist() == list(range(9))
# fmt: off
true_df = (
pd.concat([a.obsm["df"] for a in obsm_adatas], join="inner")
.reset_index(drop=True)
)
# fmt: on
cur_df = adata.obsm["df"].reset_index(drop=True)
pd.testing.assert_frame_equal(true_df, cur_df)
def test_concatenate_obsm_outer(obsm_adatas, fill_val):
outer = obsm_adatas[0].concatenate(
obsm_adatas[1:], join="outer", fill_value=fill_val
)
inner = obsm_adatas[0].concatenate(obsm_adatas[1:], join="inner")
for k, inner_v in inner.obsm.items():
assert np.array_equal(
_subset(outer.obsm[k], (slice(None), slice(None, inner_v.shape[1]))),
inner_v,
)
assert set(outer.obsm.keys()) == {"dense", "df", "sparse"}
assert isinstance(outer.obsm["dense"], np.ndarray)
np.testing.assert_equal(
outer.obsm["dense"],
np.array(
[
[0, 1, fill_val],
[2, 3, fill_val],
[4, 5, fill_val],
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[4, 5, fill_val],
[6, 7, fill_val],
]
),
)
assert isinstance(outer.obsm["sparse"], sparse.spmatrix)
np.testing.assert_equal(
outer.obsm["sparse"].toarray(),
np.array(
[
[0, 1, fill_val, fill_val],
[2, 3, fill_val, fill_val],
[4, 5, fill_val, fill_val],
[fill_val, fill_val, fill_val, fill_val],
[fill_val, fill_val, fill_val, fill_val],
[fill_val, fill_val, fill_val, fill_val],
[fill_val, fill_val, fill_val, fill_val],
[0, 1, 2, 3],
[4, 5, 6, 7],
]
),
)
# fmt: off
true_df = (
pd.concat([a.obsm["df"] for a in obsm_adatas], join="outer")
.reset_index(drop=True)
)
# fmt: on
cur_df = outer.obsm["df"].reset_index(drop=True)
pd.testing.assert_frame_equal(true_df, cur_df)
def test_concat_annot_join(obsm_adatas, join_type):
adatas = [
AnnData(sparse.csr_matrix(a.shape), obs=a.obsm["df"], var=a.var)
for a in obsm_adatas
]
pd.testing.assert_frame_equal(
concat(adatas, join=join_type).obs,
pd.concat([a.obs for a in adatas], join=join_type),
)
def test_concatenate_layers_misaligned(array_type, join_type):
adatas = []
for _ in range(5):
a = array_type(sparse.random(100, 200, format="csr"))
adata = AnnData(X=a, layers={"a": a})
adatas.append(
adata[:, np.random.choice(adata.var_names, 150, replace=False)].copy()
)
merged = adatas[0].concatenate(adatas[1:], join=join_type)
assert_equal(merged.X, merged.layers["a"])
def test_concatenate_layers_outer(array_type, fill_val):
# Testing that issue #368 is fixed
a = AnnData(
X=np.ones((10, 20)),
layers={"a": array_type(sparse.random(10, 20, format="csr"))},
)
b = AnnData(X=np.ones((10, 20)))
c = a.concatenate(b, join="outer", fill_value=fill_val, batch_categories=["a", "b"])
np.testing.assert_array_equal(
asarray(c[c.obs["batch"] == "b"].layers["a"]), fill_val
)
def test_concatenate_fill_value(fill_val):
def get_obs_els(adata):
return {
"X": adata.X,
**{f"layer_{k}": adata.layers[k] for k in adata.layers},
**{f"obsm_{k}": adata.obsm[k] for k in adata.obsm},
}
adata1 = gen_adata((10, 10))
adata1.obsm = {
k: v for k, v in adata1.obsm.items() if not isinstance(v, pd.DataFrame)
}
adata2 = gen_adata((10, 5))
adata2.obsm = {
k: v[:, : v.shape[1] // 2]
for k, v in adata2.obsm.items()
if not isinstance(v, pd.DataFrame)
}
adata3 = gen_adata((7, 3))
adata3.obsm = {
k: v[:, : v.shape[1] // 3]
for k, v in adata3.obsm.items()
if not isinstance(v, pd.DataFrame)
}
joined = adata1.concatenate([adata2, adata3], join="outer", fill_value=fill_val)
ptr = 0
for orig in [adata1, adata2, adata3]:
cur = joined[ptr : ptr + orig.n_obs]
cur_els = get_obs_els(cur)
orig_els = get_obs_els(orig)
for k, cur_v in cur_els.items():
orig_v = orig_els.get(k, sparse.csr_matrix((orig.n_obs, 0)))
assert_equal(cur_v[:, : orig_v.shape[1]], orig_v)
np.testing.assert_equal(asarray(cur_v[:, orig_v.shape[1] :]), fill_val)
ptr += orig.n_obs
def test_concatenate_dense_duplicates():
X1 = np.array([[1, 2, 3], [4, 5, 6]])
X2 = np.array([[1, 2, 3], [4, 5, 6]])
X3 = np.array([[1, 2, 3], [4, 5, 6]])
# inner join duplicates
adata1 = AnnData(
X1,
dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]),
dict(
var_names=["a", "b", "c"],
annoA=[0, 1, 2],
annoB=[1.1, 1.0, 2.0],
annoC=[1.1, 1.0, 2.0],
annoD=[2.1, 2.0, 3.0],
),
)
adata2 = AnnData(
X2,
dict(obs_names=["s3", "s4"], anno1=["c3", "c4"]),
dict(
var_names=["a", "b", "c"],
annoA=[0, 1, 2],
annoB=[1.1, 1.0, 2.0],
annoC=[1.1, 1.0, 2.0],
annoD=[2.1, 2.0, 3.0],
),
)
adata3 = AnnData(
X3,
dict(obs_names=["s1", "s2"], anno2=["d3", "d4"]),
dict(
var_names=["a", "b", "c"],
annoA=[0, 1, 2],
annoB=[1.1, 1.0, 2.0],
annoD=[2.1, 2.0, 3.1],
),
)
adata = adata1.concatenate(adata2, adata3)
assert adata.var_keys() == [
"annoA",
"annoB",
"annoC-0",
"annoD-0",
"annoC-1",
"annoD-1",
"annoD-2",
]
def test_concatenate_sparse():
# sparse data
from scipy.sparse import csr_matrix
X1 = csr_matrix([[0, 2, 3], [0, 5, 6]])
X2 = csr_matrix([[0, 2, 3], [0, 5, 6]])
X3 = csr_matrix([[1, 2, 0], [0, 5, 6]])
adata1 = AnnData(
X1,
dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]),
dict(var_names=["a", "b", "c"]),
layers=dict(Xs=X1),
)
adata2 = AnnData(
X2,
dict(obs_names=["s3", "s4"], anno1=["c3", "c4"]),
dict(var_names=["d", "c", "b"]),
layers=dict(Xs=X2),
)
adata3 = AnnData(
X3,
dict(obs_names=["s5", "s6"], anno2=["d3", "d4"]),
dict(var_names=["d", "c", "b"]),
layers=dict(Xs=X3),
)
# inner join
adata = adata1.concatenate(adata2, adata3)
X_combined = [[2, 3], [5, 6], [3, 2], [6, 5], [0, 2], [6, 5]]
assert adata.X.toarray().astype(int).tolist() == X_combined
assert adata.layers["Xs"].toarray().astype(int).tolist() == X_combined
# outer join
adata = adata1.concatenate(adata2, adata3, join="outer")
assert adata.X.toarray().tolist() == [
[0.0, 2.0, 3.0, 0.0],
[0.0, 5.0, 6.0, 0.0],
[0.0, 3.0, 2.0, 0.0],
[0.0, 6.0, 5.0, 0.0],
[0.0, 0.0, 2.0, 1.0],
[0.0, 6.0, 5.0, 0.0],
]
def test_concatenate_mixed():
X1 = sparse.csr_matrix(np.array([[1, 2, 0], [4, 0, 6], [0, 0, 9]]))
X2 = sparse.csr_matrix(np.array([[0, 2, 3], [4, 0, 0], [7, 0, 9]]))
X3 = sparse.csr_matrix(np.array([[1, 0, 3], [0, 0, 6], [0, 8, 0]]))
X4 = np.array([[0, 2, 3], [4, 0, 0], [7, 0, 9]])
adata1 = AnnData(
X1,
dict(obs_names=["s1", "s2", "s3"], anno1=["c1", "c2", "c3"]),
dict(var_names=["a", "b", "c"], annoA=[0, 1, 2]),
layers=dict(counts=X1),
)
adata2 = AnnData(
X2,
dict(obs_names=["s4", "s5", "s6"], anno1=["c3", "c4", "c5"]),
dict(var_names=["d", "c", "b"], annoA=[0, 1, 2]),
layers=dict(counts=X4), # sic
)
adata3 = AnnData(
X3,
dict(obs_names=["s7", "s8", "s9"], anno2=["d3", "d4", "d5"]),
dict(var_names=["d", "c", "b"], annoA=[0, 2, 3], annoB=[0, 1, 2]),
layers=dict(counts=X3),
)
adata4 = AnnData(
X4,
dict(obs_names=["s4", "s5", "s6"], anno1=["c3", "c4", "c5"]),
dict(var_names=["d", "c", "b"], annoA=[0, 1, 2]),
layers=dict(counts=X2), # sic
)
adata_all = AnnData.concatenate(adata1, adata2, adata3, adata4)
assert isinstance(adata_all.X, sparse.csr_matrix)
assert isinstance(adata_all.layers["counts"], sparse.csr_matrix)
def test_concatenate_with_raw():
# dense data
X1 = np.array([[1, 2, 3], [4, 5, 6]])
X2 = np.array([[1, 2, 3], [4, 5, 6]])
X3 = np.array([[1, 2, 3], [4, 5, 6]])
X4 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
adata1 = AnnData(
X1,
dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]),
dict(var_names=["a", "b", "c"], annoA=[0, 1, 2]),
layers=dict(Xs=X1),
)
adata2 = AnnData(
X2,
dict(obs_names=["s3", "s4"], anno1=["c3", "c4"]),
dict(var_names=["d", "c", "b"], annoA=[0, 1, 2]),
layers=dict(Xs=X2),
)
adata3 = AnnData(
X3,
dict(obs_names=["s1", "s2"], anno2=["d3", "d4"]),
dict(var_names=["d", "c", "b"], annoB=[0, 1, 2]),
layers=dict(Xs=X3),
)
adata4 = AnnData(
X4,
dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]),
dict(var_names=["a", "b", "c", "z"], annoA=[0, 1, 2, 3]),
layers=dict(Xs=X4),
)
adata1.raw = adata1
adata2.raw = adata2
adata3.raw = adata3
adata_all = AnnData.concatenate(adata1, adata2, adata3)
assert isinstance(adata_all.raw, Raw)
assert set(adata_all.raw.var_names) == {"b", "c"}
assert_equal(adata_all.raw.to_adata().obs, adata_all.obs)
assert np.array_equal(adata_all.raw.X, adata_all.X)
adata_all = AnnData.concatenate(adata1, adata2, adata3, join="outer")
assert isinstance(adata_all.raw, Raw)
assert set(adata_all.raw.var_names) == set("abcd")
assert_equal(adata_all.raw.to_adata().obs, adata_all.obs)
assert np.array_equal(np.nan_to_num(adata_all.raw.X), np.nan_to_num(adata_all.X))
adata3.raw = adata4
adata_all = AnnData.concatenate(adata1, adata2, adata3, join="outer")
assert isinstance(adata_all.raw, Raw)
assert set(adata_all.raw.var_names) == set("abcdz")
assert set(adata_all.var_names) == set("abcd")
assert not np.array_equal(
np.nan_to_num(adata_all.raw.X), np.nan_to_num(adata_all.X)
)
del adata3.raw
with pytest.warns(
UserWarning,
match=(
"Only some AnnData objects have `.raw` attribute, "
"not concatenating `.raw` attributes."
),
):
adata_all = AnnData.concatenate(adata1, adata2, adata3)
assert adata_all.raw is None
del adata1.raw
del adata2.raw
assert all(_adata.raw is None for _adata in (adata1, adata2, adata3))
adata_all = AnnData.concatenate(adata1, adata2, adata3)
assert adata_all.raw is None
def test_pairwise_concat(axis, array_type):
dim_sizes = [[100, 200, 50], [50, 50, 50]]
if axis:
dim_sizes.reverse()
Ms, Ns = dim_sizes
dim = ("obs", "var")[axis]
alt = ("var", "obs")[axis]
dim_attr = f"{dim}p"
alt_attr = f"{alt}p"
def gen_dim_array(m):
return array_type(sparse.random(m, m, format="csr", density=0.1))
adatas = {
k: AnnData(
**{
"X": sparse.csr_matrix((m, n)),
"obsp": {"arr": gen_dim_array(m)},
"varp": {"arr": gen_dim_array(n)},
}
)
for k, m, n in zip("abc", Ms, Ns)
}
w_pairwise = concat(adatas, axis=axis, label="orig", pairwise=True)
wo_pairwise = concat(adatas, axis=axis, label="orig", pairwise=False)
# Check that argument controls whether elements are included
assert getattr(wo_pairwise, dim_attr) == {}
assert getattr(w_pairwise, dim_attr) != {}
# Check values of included elements
full_inds = np.arange(w_pairwise.shape[axis])
groups = getattr(w_pairwise, dim).groupby("orig").indices
for k, inds in groups.items():
orig_arr = getattr(adatas[k], dim_attr)["arr"]
full_arr = getattr(w_pairwise, dim_attr)["arr"]
# Check original values are intact
assert_equal(orig_arr, _subset(full_arr, (inds, inds)))
# Check that entries are filled with zeroes
assert_equal(
sparse.csr_matrix((len(inds), len(full_inds) - len(inds))),
_subset(full_arr, (inds, np.setdiff1d(full_inds, inds))),
)
assert_equal(
sparse.csr_matrix((len(full_inds) - len(inds), len(inds))),
_subset(full_arr, (np.setdiff1d(full_inds, inds), inds)),
)
# Check that argument does not affect alternative axis
assert "arr" in getattr(
concat(adatas, axis=axis, pairwise=False, merge="first"), alt_attr
)
def test_nan_merge(axis, join_type, array_type):
# concat_dim = ("obs", "var")[axis]
alt_dim = ("var", "obs")[axis]
mapping_attr = f"{alt_dim}m"
adata_shape = (20, 10)
arr = array_type(
sparse.random(adata_shape[1 - axis], 10, density=0.1, format="csr")
)
arr_nan = arr.copy()
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=sparse.SparseEfficiencyWarning)
for _ in range(10):
arr_nan[
np.random.choice(arr.shape[0]), np.random.choice(arr.shape[1])
] = np.nan
_data = {"X": sparse.csr_matrix(adata_shape), mapping_attr: {"arr": arr_nan}}
orig1 = AnnData(**_data)
orig2 = AnnData(**_data)
result = concat([orig1, orig2], axis=axis, merge="same")
assert_equal(getattr(orig1, mapping_attr), getattr(result, mapping_attr))
orig_nonan = AnnData(
**{"X": sparse.csr_matrix(adata_shape), mapping_attr: {"arr": arr}}
)
result_nonan = concat([orig1, orig_nonan], axis=axis, merge="same")
assert len(getattr(result_nonan, mapping_attr)) == 0
def test_merge_unique():
from anndata._core.merge import merge_unique
# Simple cases
assert merge_unique([{"a": "b"}, {"a": "b"}]) == {"a": "b"}
assert merge_unique([{"a": {"b": "c"}}, {"a": {"b": "c"}}]) == {"a": {"b": "c"}}
assert merge_unique([{"a": {"b": "c"}}, {"a": {"b": "d"}}]) == {}
assert merge_unique([{"a": {"b": "c", "d": "e"}}, {"a": {"b": "c", "d": "f"}}]) == {
"a": {"b": "c"}
}
assert merge_unique(
[{"a": {"b": {"c": {"d": "e"}}}}, {"a": {"b": {"c": {"d": "e"}}}}]
) == {"a": {"b": {"c": {"d": "e"}}}}
assert (
merge_unique(
[
{"a": {"b": {"c": {"d": "e"}}}},
{"a": {"b": {"c": {"d": "f"}}}},
{"a": {"b": {"c": {"d": "e"}}}},
]
)
== {}
)
assert merge_unique([{"a": 1}, {"b": 2}]) == {"a": 1, "b": 2}
assert merge_unique([{"a": 1}, {"b": 2}, {"a": 1, "b": {"c": 2, "d": 3}}]) == {
"a": 1
}
# Test equivalency between arrays and lists
assert list(
merge_unique([{"a": np.ones(5)}, {"a": list(np.ones(5))}])["a"]
) == list(np.ones(5))
assert merge_unique([{"a": np.ones(5)}, {"a": list(np.ones(4))}]) == {}
def test_merge_same():
from anndata._core.merge import merge_same
# Same as unique for a number of cases:
assert merge_same([{"a": "b"}, {"a": "b"}]) == {"a": "b"}
assert merge_same([{"a": {"b": "c"}}, {"a": {"b": "c"}}]) == {"a": {"b": "c"}}
assert merge_same([{"a": {"b": "c"}}, {"a": {"b": "d"}}]) == {}
assert merge_same([{"a": {"b": "c", "d": "e"}}, {"a": {"b": "c", "d": "f"}}]) == {
"a": {"b": "c"}
}
assert merge_same([{"a": {"b": "c"}, "d": "e"}, {"a": {"b": "c"}, "d": 2}]) == {
"a": {"b": "c"}
}
assert merge_same(
[{"a": {"b": {"c": {"d": "e"}}}}, {"a": {"b": {"c": {"d": "e"}}}}]
) == {"a": {"b": {"c": {"d": "e"}}}}
assert merge_same([{"a": 1}, {"b": 2}]) == {}
assert merge_same([{"a": 1}, {"b": 2}, {"a": 1, "b": {"c": 2, "d": 3}}]) == {}
# Test equivalency between arrays and lists
assert list(merge_same([{"a": np.ones(5)}, {"a": list(np.ones(5))}])["a"]) == list(
np.ones(5)
)
def test_merge_first():
from anndata._core.merge import merge_first
assert merge_first([{"a": "b"}, {"a": "b"}]) == {"a": "b"}
assert merge_first([{"a": {"b": "c"}}, {"a": {"b": "c"}}]) == {"a": {"b": "c"}}
assert merge_first([{"a": 1}, {"a": 2}]) == {"a": 1}
assert merge_first([{"a": 1}, {"a": {"b": {"c": {"d": "e"}}}}]) == {"a": 1}
assert merge_first([{"a": {"b": {"c": {"d": "e"}}}}, {"a": 1}]) == {
"a": {"b": {"c": {"d": "e"}}}
}
# Helpers for test_concatenate_uns
def uns_ad(uns):
return AnnData(np.zeros((10, 10)), uns=uns)
def map_values(mapping, path, key, old_parent, new_parent, new_items):
ret = default_exit(path, key, old_parent, new_parent, new_items)
for k, v in ret.items():
if isinstance(v, Hashable) and v in mapping:
ret[k] = mapping[v]
return ret
def permute_nested_values(dicts: "List[dict]", gen_val: "Callable[[int], Any]"):
"""
This function permutes the values of a nested mapping, for testing that out merge
method work regardless of the values types.
Assumes the intial dictionary had integers for values.
"""
dicts = deepcopy(dicts)
initial_values = [
x[1] for x in research(dicts, query=lambda p, k, v: isinstance(v, int))
]
mapping = {k: gen_val(k) for k in initial_values}
return [remap(d, exit=partial(map_values, mapping)) for d in dicts]
def gen_df(n):
return helpers.gen_typed_df(n)
def gen_array(n):
return np.random.randn(n)
def gen_list(n):
return list(gen_array(n))
def gen_sparse(n):
return sparse.random(np.random.randint(1, 100), np.random.randint(1, 100))
def gen_something(n):
options = [gen_df, gen_array, gen_list, gen_sparse]
return np.random.choice(options)(n)
def gen_concat_params(unss, compat2result):
value_generators = [
lambda x: x,
gen_df,
gen_array,
gen_list,
gen_sparse,
gen_something,
]
for gen, (mode, result) in product(value_generators, compat2result.items()):
yield pytest.param(unss, mode, result, gen)
@pytest.mark.parametrize(
["unss", "merge_strategy", "result", "value_gen"],
chain(
gen_concat_params(
[{"a": 1}, {"a": 2}],
{None: {}, "first": {"a": 1}, "unique": {}, "same": {}, "only": {}},
),
gen_concat_params(
[{"a": 1}, {"b": 2}],
{
None: {},
"first": {"a": 1, "b": 2},
"unique": {"a": 1, "b": 2},
"same": {},
"only": {"a": 1, "b": 2},
},
),
gen_concat_params(
[
{"a": {"b": 1, "c": {"d": 3}}},
{"a": {"b": 1, "c": {"e": 4}}},
],
{
None: {},
"first": {"a": {"b": 1, "c": {"d": 3, "e": 4}}},
"unique": {"a": {"b": 1, "c": {"d": 3, "e": 4}}},
"same": {"a": {"b": 1}},
"only": {"a": {"c": {"d": 3, "e": 4}}},
},
),
gen_concat_params(
[
{"a": 1},
{"a": 1, "b": 2},
{"a": 1, "b": {"b.a": 1}, "c": 3},
{"d": 4},
],
{
None: {},
"first": {"a": 1, "b": 2, "c": 3, "d": 4},
"unique": {"a": 1, "c": 3, "d": 4},
"same": {},
"only": {"c": 3, "d": 4},
},
),
gen_concat_params(
[{"a": i} for i in range(15)],
{None: {}, "first": {"a": 0}, "unique": {}, "same": {}, "only": {}},
),
gen_concat_params(
[{"a": 1} for i in range(10)] + [{"a": 2}],
{None: {}, "first": {"a": 1}, "unique": {}, "same": {}, "only": {}},
),
),
)
def test_concatenate_uns(unss, merge_strategy, result, value_gen):
"""
Test that concatenation works out for different strategies and sets of values.
Params
------
unss
Set of patterns for values in uns.
compat
Strategy to use for merging uns.
result
Pattern we expect to see for the given input and strategy.
value_gen
Maps values in unss and results to another set of values. This is for checking that
we're comparing values correctly. For example `[{"a": 1}, {"a": 1}]` may get mapped
to `[{"a": [1, 2, 3]}, {"a": [1, 2, 3]}]`.
"""
# So we can see what the initial pattern was meant to be
print(merge_strategy, "\n", unss, "\n", result)
result, *unss = permute_nested_values([result] + unss, value_gen)
adatas = [uns_ad(uns) for uns in unss]
assert_equal(
adatas[0].concatenate(adatas[1:], uns_merge=merge_strategy).uns,
result,
elem_name="uns",
)
def test_transposed_concat(array_type, axis, join_type, merge_strategy, fill_val):
lhs = gen_adata((10, 10), X_type=array_type)
rhs = gen_adata((10, 12), X_type=array_type)
a = concat([lhs, rhs], axis=axis, join=join_type, merge=merge_strategy)
b = concat(
[lhs.T, rhs.T], axis=abs(axis - 1), join=join_type, merge=merge_strategy
).T
assert_equal(a, b)
def test_batch_key(axis):
"""Test that concat only adds a label if the key is provided"""
def get_annot(adata):
return getattr(adata, ("obs", "var")[axis])
lhs = gen_adata((10, 10))
rhs = gen_adata((10, 12))
# There is probably a prettier way to do this
annot = get_annot(concat([lhs, rhs], axis=axis))
assert (
list(
annot.columns.difference(
get_annot(lhs).columns.union(get_annot(rhs).columns)
)
)
== []
)
batch_annot = get_annot(concat([lhs, rhs], axis=axis, label="batch"))
assert list(
batch_annot.columns.difference(
get_annot(lhs).columns.union(get_annot(rhs).columns)
)
) == ["batch"]
def test_concat_categories_from_mapping():
mapping = {
"a": gen_adata((10, 10)),
"b": gen_adata((10, 10)),
}
keys = list(mapping.keys())
adatas = list(mapping.values())
mapping_call = partial(concat, mapping)
iter_call = partial(concat, adatas, keys=keys)
assert_equal(mapping_call(), iter_call())
assert_equal(mapping_call(label="batch"), iter_call(label="batch"))
assert_equal(mapping_call(index_unique="-"), iter_call(index_unique="-"))
assert_equal(
mapping_call(label="group", index_unique="+"),
iter_call(label="group", index_unique="+"),
)
def test_concat_names(axis):
def get_annot(adata):
return getattr(adata, ("obs", "var")[axis])
lhs = gen_adata((10, 10))
rhs = gen_adata((10, 10))
assert not get_annot(concat([lhs, rhs], axis=axis)).index.is_unique
assert get_annot(concat([lhs, rhs], axis=axis, index_unique="-")).index.is_unique
# Leaving out for now. See definition of these values for explanation
# def test_concatenate_uns_types():
# from anndata._core.merge import UNS_STRATEGIES, UNS_STRATEGIES_TYPE
# assert set(UNS_STRATEGIES.keys()) == set(UNS_STRATEGIES_TYPE.__args__)
|