File: test_concatenate.py

package info (click to toggle)
python-anndata 0.7.5%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 628 kB
  • sloc: python: 7,779; makefile: 8
file content (1005 lines) | stat: -rw-r--r-- 31,547 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
from collections.abc import Hashable
from copy import deepcopy
from itertools import chain, product
from functools import partial
import warnings

import numpy as np
from numpy import ma
import pandas as pd
from pandas.api.types import is_categorical_dtype
import pytest
from scipy import sparse
from boltons.iterutils import research, remap, default_exit


from anndata import AnnData, Raw, concat
from anndata._core.index import _subset
from anndata._core import merge
from anndata.tests import helpers
from anndata.tests.helpers import assert_equal, gen_adata
from anndata.utils import asarray


@pytest.fixture(
    params=[asarray, sparse.csr_matrix, sparse.csc_matrix],
    ids=["np_array", "scipy_csr", "scipy_csc"],
)
def array_type(request):
    return request.param


@pytest.fixture(params=["inner", "outer"])
def join_type(request):
    return request.param


@pytest.fixture(params=[0, np.nan, np.pi])
def fill_val(request):
    return request.param


@pytest.fixture(params=[0, 1])
def axis(request):
    return request.param


@pytest.fixture(params=list(merge.MERGE_STRATEGIES.keys()))
def merge_strategy(request):
    return request.param


def fix_known_differences(orig, result, backwards_compat=True):
    """
    Helper function for reducing anndata's to only the elements we expect to be
    equivalent after concatenation.

    Only for the case where orig is the ground truth result of what concatenation should be.

    If backwards_compat, checks against what `AnnData.concatenate` could do. Otherwise checks for `concat`.
    """
    orig = orig.copy()
    result = result.copy()

    result.strings_to_categoricals()  # Should this be implicit in concatenation?

    # TODO
    # * merge varm, varp similar to uns
    # * merge obsp, but some information should be lost
    del orig.obsp  # TODO

    if backwards_compat:
        del orig.varm
        del orig.varp
        result.obs.drop(columns=["batch"], inplace=True)

    # Possibly need to fix this, ordered categoricals lose orderedness
    for k, dtype in orig.obs.dtypes.items():
        if is_categorical_dtype(dtype) and dtype.ordered:
            result.obs[k] = result.obs[k].astype(dtype)

    return orig, result


@pytest.mark.parametrize(
    ["concat_func", "backwards_compat"],
    [
        (partial(concat, merge="unique"), False),
        (lambda x, **kwargs: x[0].concatenate(x[1:], **kwargs), True),
    ],
)
def test_concatenate_roundtrip(join_type, array_type, concat_func, backwards_compat):
    adata = gen_adata((100, 10), X_type=array_type)

    remaining = adata.obs_names
    subsets = []
    while len(remaining) > 0:
        n = min(len(remaining), np.random.choice(50))
        subset_idx = np.random.choice(remaining, n, replace=False)
        subsets.append(adata[subset_idx])
        remaining = remaining.difference(subset_idx)

    result = concat_func(subsets, join=join_type, uns_merge="same", index_unique=None)

    # Correcting for known differences
    orig, result = fix_known_differences(
        adata, result, backwards_compat=backwards_compat
    )

    assert_equal(result[orig.obs_names].copy(), orig)


def test_concatenate_dense():
    # dense data
    X1 = np.array([[1, 2, 3], [4, 5, 6]])
    X2 = np.array([[1, 2, 3], [4, 5, 6]])
    X3 = np.array([[1, 2, 3], [4, 5, 6]])

    adata1 = AnnData(
        X1,
        dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]),
        dict(var_names=["a", "b", "c"], annoA=[0, 1, 2]),
        obsm=dict(X_1=X1, X_2=X2, X_3=X3),
        layers=dict(Xs=X1),
    )
    adata2 = AnnData(
        X2,
        dict(obs_names=["s3", "s4"], anno1=["c3", "c4"]),
        dict(var_names=["d", "c", "b"], annoA=[0, 1, 2]),
        obsm=dict(X_1=X1, X_2=X2, X_3=X3),
        layers={"Xs": X2},
    )
    adata3 = AnnData(
        X3,
        dict(obs_names=["s1", "s2"], anno2=["d3", "d4"]),
        dict(var_names=["d", "c", "b"], annoB=[0, 1, 2]),
        obsm=dict(X_1=X1, X_2=X2),
        layers=dict(Xs=X3),
    )

    # inner join
    adata = adata1.concatenate(adata2, adata3)
    X_combined = [[2, 3], [5, 6], [3, 2], [6, 5], [3, 2], [6, 5]]
    assert adata.X.astype(int).tolist() == X_combined
    assert adata.layers["Xs"].astype(int).tolist() == X_combined
    assert adata.obs_keys() == ["anno1", "anno2", "batch"]
    assert adata.var_keys() == ["annoA-0", "annoA-1", "annoB-2"]
    assert adata.var.values.tolist() == [[1, 2, 2], [2, 1, 1]]
    assert adata.obsm_keys() == ["X_1", "X_2"]
    assert adata.obsm["X_1"].tolist() == np.concatenate([X1, X1, X1]).tolist()

    # with batch_key and batch_categories
    adata = adata1.concatenate(adata2, adata3, batch_key="batch1")
    assert adata.obs_keys() == ["anno1", "anno2", "batch1"]
    adata = adata1.concatenate(adata2, adata3, batch_categories=["a1", "a2", "a3"])
    assert adata.obs["batch"].cat.categories.tolist() == ["a1", "a2", "a3"]
    assert adata.var_names.tolist() == ["b", "c"]

    # outer join
    adata = adata1.concatenate(adata2, adata3, join="outer")

    X_ref = np.array(
        [
            [1.0, 2.0, 3.0, np.nan],
            [4.0, 5.0, 6.0, np.nan],
            [np.nan, 3.0, 2.0, 1.0],
            [np.nan, 6.0, 5.0, 4.0],
            [np.nan, 3.0, 2.0, 1.0],
            [np.nan, 6.0, 5.0, 4.0],
        ]
    )
    np.testing.assert_equal(adata.X, X_ref)
    var_ma = ma.masked_invalid(adata.var.values.tolist())
    var_ma_ref = ma.masked_invalid(
        np.array(
            [
                [0.0, np.nan, np.nan],
                [1.0, 2.0, 2.0],
                [2.0, 1.0, 1.0],
                [np.nan, 0.0, 0.0],
            ]
        )
    )
    assert np.array_equal(var_ma.mask, var_ma_ref.mask)
    assert np.allclose(var_ma.compressed(), var_ma_ref.compressed())


def test_concatenate_layers(array_type, join_type):
    adatas = []
    for _ in range(5):
        a = array_type(sparse.random(100, 200, format="csr"))
        adatas.append(AnnData(X=a, layers={"a": a}))

    merged = adatas[0].concatenate(adatas[1:], join=join_type)
    assert_equal(merged.X, merged.layers["a"])


@pytest.fixture
def obsm_adatas():
    def gen_index(n):
        return [f"cell{i}" for i in range(n)]

    return [
        AnnData(
            X=sparse.csr_matrix((3, 5)),
            obs=pd.DataFrame(index=gen_index(3)),
            obsm={
                "dense": np.arange(6).reshape(3, 2),
                "sparse": sparse.csr_matrix(np.arange(6).reshape(3, 2)),
                "df": pd.DataFrame(
                    {
                        "a": np.arange(3),
                        "b": list("abc"),
                        "c": pd.Categorical(list("aab")),
                    },
                    index=gen_index(3),
                ),
            },
        ),
        AnnData(
            X=sparse.csr_matrix((4, 10)),
            obs=pd.DataFrame(index=gen_index(4)),
            obsm=dict(
                dense=np.arange(12).reshape(4, 3),
                df=pd.DataFrame(dict(a=np.arange(3, 7)), index=gen_index(4)),
            ),
        ),
        AnnData(
            X=sparse.csr_matrix((2, 100)),
            obs=pd.DataFrame(index=gen_index(2)),
            obsm={
                "sparse": np.arange(8).reshape(2, 4),
                "dense": np.arange(4, 8).reshape(2, 2),
                "df": pd.DataFrame(
                    {
                        "a": np.arange(7, 9),
                        "b": list("cd"),
                        "c": pd.Categorical(list("ab")),
                    },
                    index=gen_index(2),
                ),
            },
        ),
    ]


def test_concatenate_obsm_inner(obsm_adatas):
    adata = obsm_adatas[0].concatenate(obsm_adatas[1:], join="inner")

    assert set(adata.obsm.keys()) == {"dense", "df"}
    assert adata.obsm["dense"].shape == (9, 2)
    assert adata.obsm["dense"].tolist() == [
        [0, 1],
        [2, 3],
        [4, 5],
        [0, 1],
        [3, 4],
        [6, 7],
        [9, 10],
        [4, 5],
        [6, 7],
    ]

    assert adata.obsm["df"].columns == ["a"]
    assert adata.obsm["df"]["a"].tolist() == list(range(9))
    # fmt: off
    true_df = (
        pd.concat([a.obsm["df"] for a in obsm_adatas], join="inner")
        .reset_index(drop=True)
    )
    # fmt: on
    cur_df = adata.obsm["df"].reset_index(drop=True)
    pd.testing.assert_frame_equal(true_df, cur_df)


def test_concatenate_obsm_outer(obsm_adatas, fill_val):
    outer = obsm_adatas[0].concatenate(
        obsm_adatas[1:], join="outer", fill_value=fill_val
    )

    inner = obsm_adatas[0].concatenate(obsm_adatas[1:], join="inner")
    for k, inner_v in inner.obsm.items():
        assert np.array_equal(
            _subset(outer.obsm[k], (slice(None), slice(None, inner_v.shape[1]))),
            inner_v,
        )

    assert set(outer.obsm.keys()) == {"dense", "df", "sparse"}
    assert isinstance(outer.obsm["dense"], np.ndarray)
    np.testing.assert_equal(
        outer.obsm["dense"],
        np.array(
            [
                [0, 1, fill_val],
                [2, 3, fill_val],
                [4, 5, fill_val],
                [0, 1, 2],
                [3, 4, 5],
                [6, 7, 8],
                [9, 10, 11],
                [4, 5, fill_val],
                [6, 7, fill_val],
            ]
        ),
    )

    assert isinstance(outer.obsm["sparse"], sparse.spmatrix)
    np.testing.assert_equal(
        outer.obsm["sparse"].toarray(),
        np.array(
            [
                [0, 1, fill_val, fill_val],
                [2, 3, fill_val, fill_val],
                [4, 5, fill_val, fill_val],
                [fill_val, fill_val, fill_val, fill_val],
                [fill_val, fill_val, fill_val, fill_val],
                [fill_val, fill_val, fill_val, fill_val],
                [fill_val, fill_val, fill_val, fill_val],
                [0, 1, 2, 3],
                [4, 5, 6, 7],
            ]
        ),
    )

    # fmt: off
    true_df = (
        pd.concat([a.obsm["df"] for a in obsm_adatas], join="outer")
        .reset_index(drop=True)
    )
    # fmt: on
    cur_df = outer.obsm["df"].reset_index(drop=True)
    pd.testing.assert_frame_equal(true_df, cur_df)


def test_concat_annot_join(obsm_adatas, join_type):
    adatas = [
        AnnData(sparse.csr_matrix(a.shape), obs=a.obsm["df"], var=a.var)
        for a in obsm_adatas
    ]
    pd.testing.assert_frame_equal(
        concat(adatas, join=join_type).obs,
        pd.concat([a.obs for a in adatas], join=join_type),
    )


def test_concatenate_layers_misaligned(array_type, join_type):
    adatas = []
    for _ in range(5):
        a = array_type(sparse.random(100, 200, format="csr"))
        adata = AnnData(X=a, layers={"a": a})
        adatas.append(
            adata[:, np.random.choice(adata.var_names, 150, replace=False)].copy()
        )

    merged = adatas[0].concatenate(adatas[1:], join=join_type)
    assert_equal(merged.X, merged.layers["a"])


def test_concatenate_layers_outer(array_type, fill_val):
    # Testing that issue #368 is fixed
    a = AnnData(
        X=np.ones((10, 20)),
        layers={"a": array_type(sparse.random(10, 20, format="csr"))},
    )
    b = AnnData(X=np.ones((10, 20)))

    c = a.concatenate(b, join="outer", fill_value=fill_val, batch_categories=["a", "b"])

    np.testing.assert_array_equal(
        asarray(c[c.obs["batch"] == "b"].layers["a"]), fill_val
    )


def test_concatenate_fill_value(fill_val):
    def get_obs_els(adata):
        return {
            "X": adata.X,
            **{f"layer_{k}": adata.layers[k] for k in adata.layers},
            **{f"obsm_{k}": adata.obsm[k] for k in adata.obsm},
        }

    adata1 = gen_adata((10, 10))
    adata1.obsm = {
        k: v for k, v in adata1.obsm.items() if not isinstance(v, pd.DataFrame)
    }
    adata2 = gen_adata((10, 5))
    adata2.obsm = {
        k: v[:, : v.shape[1] // 2]
        for k, v in adata2.obsm.items()
        if not isinstance(v, pd.DataFrame)
    }
    adata3 = gen_adata((7, 3))
    adata3.obsm = {
        k: v[:, : v.shape[1] // 3]
        for k, v in adata3.obsm.items()
        if not isinstance(v, pd.DataFrame)
    }
    joined = adata1.concatenate([adata2, adata3], join="outer", fill_value=fill_val)

    ptr = 0
    for orig in [adata1, adata2, adata3]:
        cur = joined[ptr : ptr + orig.n_obs]
        cur_els = get_obs_els(cur)
        orig_els = get_obs_els(orig)
        for k, cur_v in cur_els.items():
            orig_v = orig_els.get(k, sparse.csr_matrix((orig.n_obs, 0)))
            assert_equal(cur_v[:, : orig_v.shape[1]], orig_v)
            np.testing.assert_equal(asarray(cur_v[:, orig_v.shape[1] :]), fill_val)
        ptr += orig.n_obs


def test_concatenate_dense_duplicates():
    X1 = np.array([[1, 2, 3], [4, 5, 6]])
    X2 = np.array([[1, 2, 3], [4, 5, 6]])
    X3 = np.array([[1, 2, 3], [4, 5, 6]])

    # inner join duplicates
    adata1 = AnnData(
        X1,
        dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]),
        dict(
            var_names=["a", "b", "c"],
            annoA=[0, 1, 2],
            annoB=[1.1, 1.0, 2.0],
            annoC=[1.1, 1.0, 2.0],
            annoD=[2.1, 2.0, 3.0],
        ),
    )
    adata2 = AnnData(
        X2,
        dict(obs_names=["s3", "s4"], anno1=["c3", "c4"]),
        dict(
            var_names=["a", "b", "c"],
            annoA=[0, 1, 2],
            annoB=[1.1, 1.0, 2.0],
            annoC=[1.1, 1.0, 2.0],
            annoD=[2.1, 2.0, 3.0],
        ),
    )
    adata3 = AnnData(
        X3,
        dict(obs_names=["s1", "s2"], anno2=["d3", "d4"]),
        dict(
            var_names=["a", "b", "c"],
            annoA=[0, 1, 2],
            annoB=[1.1, 1.0, 2.0],
            annoD=[2.1, 2.0, 3.1],
        ),
    )

    adata = adata1.concatenate(adata2, adata3)
    assert adata.var_keys() == [
        "annoA",
        "annoB",
        "annoC-0",
        "annoD-0",
        "annoC-1",
        "annoD-1",
        "annoD-2",
    ]


def test_concatenate_sparse():
    # sparse data
    from scipy.sparse import csr_matrix

    X1 = csr_matrix([[0, 2, 3], [0, 5, 6]])
    X2 = csr_matrix([[0, 2, 3], [0, 5, 6]])
    X3 = csr_matrix([[1, 2, 0], [0, 5, 6]])

    adata1 = AnnData(
        X1,
        dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]),
        dict(var_names=["a", "b", "c"]),
        layers=dict(Xs=X1),
    )
    adata2 = AnnData(
        X2,
        dict(obs_names=["s3", "s4"], anno1=["c3", "c4"]),
        dict(var_names=["d", "c", "b"]),
        layers=dict(Xs=X2),
    )
    adata3 = AnnData(
        X3,
        dict(obs_names=["s5", "s6"], anno2=["d3", "d4"]),
        dict(var_names=["d", "c", "b"]),
        layers=dict(Xs=X3),
    )

    # inner join
    adata = adata1.concatenate(adata2, adata3)
    X_combined = [[2, 3], [5, 6], [3, 2], [6, 5], [0, 2], [6, 5]]
    assert adata.X.toarray().astype(int).tolist() == X_combined
    assert adata.layers["Xs"].toarray().astype(int).tolist() == X_combined

    # outer join
    adata = adata1.concatenate(adata2, adata3, join="outer")
    assert adata.X.toarray().tolist() == [
        [0.0, 2.0, 3.0, 0.0],
        [0.0, 5.0, 6.0, 0.0],
        [0.0, 3.0, 2.0, 0.0],
        [0.0, 6.0, 5.0, 0.0],
        [0.0, 0.0, 2.0, 1.0],
        [0.0, 6.0, 5.0, 0.0],
    ]


def test_concatenate_mixed():
    X1 = sparse.csr_matrix(np.array([[1, 2, 0], [4, 0, 6], [0, 0, 9]]))
    X2 = sparse.csr_matrix(np.array([[0, 2, 3], [4, 0, 0], [7, 0, 9]]))
    X3 = sparse.csr_matrix(np.array([[1, 0, 3], [0, 0, 6], [0, 8, 0]]))
    X4 = np.array([[0, 2, 3], [4, 0, 0], [7, 0, 9]])
    adata1 = AnnData(
        X1,
        dict(obs_names=["s1", "s2", "s3"], anno1=["c1", "c2", "c3"]),
        dict(var_names=["a", "b", "c"], annoA=[0, 1, 2]),
        layers=dict(counts=X1),
    )
    adata2 = AnnData(
        X2,
        dict(obs_names=["s4", "s5", "s6"], anno1=["c3", "c4", "c5"]),
        dict(var_names=["d", "c", "b"], annoA=[0, 1, 2]),
        layers=dict(counts=X4),  # sic
    )
    adata3 = AnnData(
        X3,
        dict(obs_names=["s7", "s8", "s9"], anno2=["d3", "d4", "d5"]),
        dict(var_names=["d", "c", "b"], annoA=[0, 2, 3], annoB=[0, 1, 2]),
        layers=dict(counts=X3),
    )
    adata4 = AnnData(
        X4,
        dict(obs_names=["s4", "s5", "s6"], anno1=["c3", "c4", "c5"]),
        dict(var_names=["d", "c", "b"], annoA=[0, 1, 2]),
        layers=dict(counts=X2),  # sic
    )

    adata_all = AnnData.concatenate(adata1, adata2, adata3, adata4)
    assert isinstance(adata_all.X, sparse.csr_matrix)
    assert isinstance(adata_all.layers["counts"], sparse.csr_matrix)


def test_concatenate_with_raw():
    # dense data
    X1 = np.array([[1, 2, 3], [4, 5, 6]])
    X2 = np.array([[1, 2, 3], [4, 5, 6]])
    X3 = np.array([[1, 2, 3], [4, 5, 6]])

    X4 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

    adata1 = AnnData(
        X1,
        dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]),
        dict(var_names=["a", "b", "c"], annoA=[0, 1, 2]),
        layers=dict(Xs=X1),
    )
    adata2 = AnnData(
        X2,
        dict(obs_names=["s3", "s4"], anno1=["c3", "c4"]),
        dict(var_names=["d", "c", "b"], annoA=[0, 1, 2]),
        layers=dict(Xs=X2),
    )
    adata3 = AnnData(
        X3,
        dict(obs_names=["s1", "s2"], anno2=["d3", "d4"]),
        dict(var_names=["d", "c", "b"], annoB=[0, 1, 2]),
        layers=dict(Xs=X3),
    )

    adata4 = AnnData(
        X4,
        dict(obs_names=["s1", "s2"], anno1=["c1", "c2"]),
        dict(var_names=["a", "b", "c", "z"], annoA=[0, 1, 2, 3]),
        layers=dict(Xs=X4),
    )

    adata1.raw = adata1
    adata2.raw = adata2
    adata3.raw = adata3

    adata_all = AnnData.concatenate(adata1, adata2, adata3)
    assert isinstance(adata_all.raw, Raw)
    assert set(adata_all.raw.var_names) == {"b", "c"}
    assert_equal(adata_all.raw.to_adata().obs, adata_all.obs)
    assert np.array_equal(adata_all.raw.X, adata_all.X)

    adata_all = AnnData.concatenate(adata1, adata2, adata3, join="outer")
    assert isinstance(adata_all.raw, Raw)
    assert set(adata_all.raw.var_names) == set("abcd")
    assert_equal(adata_all.raw.to_adata().obs, adata_all.obs)
    assert np.array_equal(np.nan_to_num(adata_all.raw.X), np.nan_to_num(adata_all.X))

    adata3.raw = adata4
    adata_all = AnnData.concatenate(adata1, adata2, adata3, join="outer")
    assert isinstance(adata_all.raw, Raw)
    assert set(adata_all.raw.var_names) == set("abcdz")
    assert set(adata_all.var_names) == set("abcd")
    assert not np.array_equal(
        np.nan_to_num(adata_all.raw.X), np.nan_to_num(adata_all.X)
    )

    del adata3.raw
    with pytest.warns(
        UserWarning,
        match=(
            "Only some AnnData objects have `.raw` attribute, "
            "not concatenating `.raw` attributes."
        ),
    ):
        adata_all = AnnData.concatenate(adata1, adata2, adata3)
    assert adata_all.raw is None

    del adata1.raw
    del adata2.raw
    assert all(_adata.raw is None for _adata in (adata1, adata2, adata3))
    adata_all = AnnData.concatenate(adata1, adata2, adata3)
    assert adata_all.raw is None


def test_pairwise_concat(axis, array_type):
    dim_sizes = [[100, 200, 50], [50, 50, 50]]
    if axis:
        dim_sizes.reverse()
    Ms, Ns = dim_sizes
    dim = ("obs", "var")[axis]
    alt = ("var", "obs")[axis]
    dim_attr = f"{dim}p"
    alt_attr = f"{alt}p"

    def gen_dim_array(m):
        return array_type(sparse.random(m, m, format="csr", density=0.1))

    adatas = {
        k: AnnData(
            **{
                "X": sparse.csr_matrix((m, n)),
                "obsp": {"arr": gen_dim_array(m)},
                "varp": {"arr": gen_dim_array(n)},
            }
        )
        for k, m, n in zip("abc", Ms, Ns)
    }

    w_pairwise = concat(adatas, axis=axis, label="orig", pairwise=True)
    wo_pairwise = concat(adatas, axis=axis, label="orig", pairwise=False)

    # Check that argument controls whether elements are included
    assert getattr(wo_pairwise, dim_attr) == {}
    assert getattr(w_pairwise, dim_attr) != {}

    # Check values of included elements
    full_inds = np.arange(w_pairwise.shape[axis])
    groups = getattr(w_pairwise, dim).groupby("orig").indices
    for k, inds in groups.items():
        orig_arr = getattr(adatas[k], dim_attr)["arr"]
        full_arr = getattr(w_pairwise, dim_attr)["arr"]

        # Check original values are intact
        assert_equal(orig_arr, _subset(full_arr, (inds, inds)))
        # Check that entries are filled with zeroes
        assert_equal(
            sparse.csr_matrix((len(inds), len(full_inds) - len(inds))),
            _subset(full_arr, (inds, np.setdiff1d(full_inds, inds))),
        )
        assert_equal(
            sparse.csr_matrix((len(full_inds) - len(inds), len(inds))),
            _subset(full_arr, (np.setdiff1d(full_inds, inds), inds)),
        )

    # Check that argument does not affect alternative axis
    assert "arr" in getattr(
        concat(adatas, axis=axis, pairwise=False, merge="first"), alt_attr
    )


def test_nan_merge(axis, join_type, array_type):
    # concat_dim = ("obs", "var")[axis]
    alt_dim = ("var", "obs")[axis]
    mapping_attr = f"{alt_dim}m"
    adata_shape = (20, 10)

    arr = array_type(
        sparse.random(adata_shape[1 - axis], 10, density=0.1, format="csr")
    )
    arr_nan = arr.copy()
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", category=sparse.SparseEfficiencyWarning)
        for _ in range(10):
            arr_nan[
                np.random.choice(arr.shape[0]), np.random.choice(arr.shape[1])
            ] = np.nan

    _data = {"X": sparse.csr_matrix(adata_shape), mapping_attr: {"arr": arr_nan}}
    orig1 = AnnData(**_data)
    orig2 = AnnData(**_data)
    result = concat([orig1, orig2], axis=axis, merge="same")

    assert_equal(getattr(orig1, mapping_attr), getattr(result, mapping_attr))

    orig_nonan = AnnData(
        **{"X": sparse.csr_matrix(adata_shape), mapping_attr: {"arr": arr}}
    )
    result_nonan = concat([orig1, orig_nonan], axis=axis, merge="same")

    assert len(getattr(result_nonan, mapping_attr)) == 0


def test_merge_unique():
    from anndata._core.merge import merge_unique

    # Simple cases
    assert merge_unique([{"a": "b"}, {"a": "b"}]) == {"a": "b"}
    assert merge_unique([{"a": {"b": "c"}}, {"a": {"b": "c"}}]) == {"a": {"b": "c"}}
    assert merge_unique([{"a": {"b": "c"}}, {"a": {"b": "d"}}]) == {}
    assert merge_unique([{"a": {"b": "c", "d": "e"}}, {"a": {"b": "c", "d": "f"}}]) == {
        "a": {"b": "c"}
    }

    assert merge_unique(
        [{"a": {"b": {"c": {"d": "e"}}}}, {"a": {"b": {"c": {"d": "e"}}}}]
    ) == {"a": {"b": {"c": {"d": "e"}}}}
    assert (
        merge_unique(
            [
                {"a": {"b": {"c": {"d": "e"}}}},
                {"a": {"b": {"c": {"d": "f"}}}},
                {"a": {"b": {"c": {"d": "e"}}}},
            ]
        )
        == {}
    )

    assert merge_unique([{"a": 1}, {"b": 2}]) == {"a": 1, "b": 2}
    assert merge_unique([{"a": 1}, {"b": 2}, {"a": 1, "b": {"c": 2, "d": 3}}]) == {
        "a": 1
    }

    # Test equivalency between arrays and lists
    assert list(
        merge_unique([{"a": np.ones(5)}, {"a": list(np.ones(5))}])["a"]
    ) == list(np.ones(5))
    assert merge_unique([{"a": np.ones(5)}, {"a": list(np.ones(4))}]) == {}


def test_merge_same():
    from anndata._core.merge import merge_same

    # Same as unique for a number of cases:
    assert merge_same([{"a": "b"}, {"a": "b"}]) == {"a": "b"}
    assert merge_same([{"a": {"b": "c"}}, {"a": {"b": "c"}}]) == {"a": {"b": "c"}}
    assert merge_same([{"a": {"b": "c"}}, {"a": {"b": "d"}}]) == {}
    assert merge_same([{"a": {"b": "c", "d": "e"}}, {"a": {"b": "c", "d": "f"}}]) == {
        "a": {"b": "c"}
    }

    assert merge_same([{"a": {"b": "c"}, "d": "e"}, {"a": {"b": "c"}, "d": 2}]) == {
        "a": {"b": "c"}
    }
    assert merge_same(
        [{"a": {"b": {"c": {"d": "e"}}}}, {"a": {"b": {"c": {"d": "e"}}}}]
    ) == {"a": {"b": {"c": {"d": "e"}}}}

    assert merge_same([{"a": 1}, {"b": 2}]) == {}
    assert merge_same([{"a": 1}, {"b": 2}, {"a": 1, "b": {"c": 2, "d": 3}}]) == {}

    # Test equivalency between arrays and lists
    assert list(merge_same([{"a": np.ones(5)}, {"a": list(np.ones(5))}])["a"]) == list(
        np.ones(5)
    )


def test_merge_first():
    from anndata._core.merge import merge_first

    assert merge_first([{"a": "b"}, {"a": "b"}]) == {"a": "b"}
    assert merge_first([{"a": {"b": "c"}}, {"a": {"b": "c"}}]) == {"a": {"b": "c"}}
    assert merge_first([{"a": 1}, {"a": 2}]) == {"a": 1}

    assert merge_first([{"a": 1}, {"a": {"b": {"c": {"d": "e"}}}}]) == {"a": 1}
    assert merge_first([{"a": {"b": {"c": {"d": "e"}}}}, {"a": 1}]) == {
        "a": {"b": {"c": {"d": "e"}}}
    }


# Helpers for test_concatenate_uns


def uns_ad(uns):
    return AnnData(np.zeros((10, 10)), uns=uns)


def map_values(mapping, path, key, old_parent, new_parent, new_items):
    ret = default_exit(path, key, old_parent, new_parent, new_items)
    for k, v in ret.items():
        if isinstance(v, Hashable) and v in mapping:
            ret[k] = mapping[v]
    return ret


def permute_nested_values(dicts: "List[dict]", gen_val: "Callable[[int], Any]"):
    """
    This function permutes the values of a nested mapping, for testing that out merge
    method work regardless of the values types.

    Assumes the intial dictionary had integers for values.
    """
    dicts = deepcopy(dicts)
    initial_values = [
        x[1] for x in research(dicts, query=lambda p, k, v: isinstance(v, int))
    ]
    mapping = {k: gen_val(k) for k in initial_values}
    return [remap(d, exit=partial(map_values, mapping)) for d in dicts]


def gen_df(n):
    return helpers.gen_typed_df(n)


def gen_array(n):
    return np.random.randn(n)


def gen_list(n):
    return list(gen_array(n))


def gen_sparse(n):
    return sparse.random(np.random.randint(1, 100), np.random.randint(1, 100))


def gen_something(n):
    options = [gen_df, gen_array, gen_list, gen_sparse]
    return np.random.choice(options)(n)


def gen_concat_params(unss, compat2result):
    value_generators = [
        lambda x: x,
        gen_df,
        gen_array,
        gen_list,
        gen_sparse,
        gen_something,
    ]
    for gen, (mode, result) in product(value_generators, compat2result.items()):
        yield pytest.param(unss, mode, result, gen)


@pytest.mark.parametrize(
    ["unss", "merge_strategy", "result", "value_gen"],
    chain(
        gen_concat_params(
            [{"a": 1}, {"a": 2}],
            {None: {}, "first": {"a": 1}, "unique": {}, "same": {}, "only": {}},
        ),
        gen_concat_params(
            [{"a": 1}, {"b": 2}],
            {
                None: {},
                "first": {"a": 1, "b": 2},
                "unique": {"a": 1, "b": 2},
                "same": {},
                "only": {"a": 1, "b": 2},
            },
        ),
        gen_concat_params(
            [
                {"a": {"b": 1, "c": {"d": 3}}},
                {"a": {"b": 1, "c": {"e": 4}}},
            ],
            {
                None: {},
                "first": {"a": {"b": 1, "c": {"d": 3, "e": 4}}},
                "unique": {"a": {"b": 1, "c": {"d": 3, "e": 4}}},
                "same": {"a": {"b": 1}},
                "only": {"a": {"c": {"d": 3, "e": 4}}},
            },
        ),
        gen_concat_params(
            [
                {"a": 1},
                {"a": 1, "b": 2},
                {"a": 1, "b": {"b.a": 1}, "c": 3},
                {"d": 4},
            ],
            {
                None: {},
                "first": {"a": 1, "b": 2, "c": 3, "d": 4},
                "unique": {"a": 1, "c": 3, "d": 4},
                "same": {},
                "only": {"c": 3, "d": 4},
            },
        ),
        gen_concat_params(
            [{"a": i} for i in range(15)],
            {None: {}, "first": {"a": 0}, "unique": {}, "same": {}, "only": {}},
        ),
        gen_concat_params(
            [{"a": 1} for i in range(10)] + [{"a": 2}],
            {None: {}, "first": {"a": 1}, "unique": {}, "same": {}, "only": {}},
        ),
    ),
)
def test_concatenate_uns(unss, merge_strategy, result, value_gen):
    """
    Test that concatenation works out for different strategies and sets of values.

    Params
    ------
    unss
        Set of patterns for values in uns.
    compat
        Strategy to use for merging uns.
    result
        Pattern we expect to see for the given input and strategy.
    value_gen
        Maps values in unss and results to another set of values. This is for checking that
        we're comparing values correctly. For example `[{"a": 1}, {"a": 1}]` may get mapped
        to `[{"a": [1, 2, 3]}, {"a": [1, 2, 3]}]`.
    """
    # So we can see what the initial pattern was meant to be
    print(merge_strategy, "\n", unss, "\n", result)
    result, *unss = permute_nested_values([result] + unss, value_gen)
    adatas = [uns_ad(uns) for uns in unss]
    assert_equal(
        adatas[0].concatenate(adatas[1:], uns_merge=merge_strategy).uns,
        result,
        elem_name="uns",
    )


def test_transposed_concat(array_type, axis, join_type, merge_strategy, fill_val):
    lhs = gen_adata((10, 10), X_type=array_type)
    rhs = gen_adata((10, 12), X_type=array_type)

    a = concat([lhs, rhs], axis=axis, join=join_type, merge=merge_strategy)
    b = concat(
        [lhs.T, rhs.T], axis=abs(axis - 1), join=join_type, merge=merge_strategy
    ).T

    assert_equal(a, b)


def test_batch_key(axis):
    """Test that concat only adds a label if the key is provided"""

    def get_annot(adata):
        return getattr(adata, ("obs", "var")[axis])

    lhs = gen_adata((10, 10))
    rhs = gen_adata((10, 12))

    # There is probably a prettier way to do this
    annot = get_annot(concat([lhs, rhs], axis=axis))
    assert (
        list(
            annot.columns.difference(
                get_annot(lhs).columns.union(get_annot(rhs).columns)
            )
        )
        == []
    )

    batch_annot = get_annot(concat([lhs, rhs], axis=axis, label="batch"))
    assert list(
        batch_annot.columns.difference(
            get_annot(lhs).columns.union(get_annot(rhs).columns)
        )
    ) == ["batch"]


def test_concat_categories_from_mapping():
    mapping = {
        "a": gen_adata((10, 10)),
        "b": gen_adata((10, 10)),
    }
    keys = list(mapping.keys())
    adatas = list(mapping.values())

    mapping_call = partial(concat, mapping)
    iter_call = partial(concat, adatas, keys=keys)

    assert_equal(mapping_call(), iter_call())
    assert_equal(mapping_call(label="batch"), iter_call(label="batch"))
    assert_equal(mapping_call(index_unique="-"), iter_call(index_unique="-"))
    assert_equal(
        mapping_call(label="group", index_unique="+"),
        iter_call(label="group", index_unique="+"),
    )


def test_concat_names(axis):
    def get_annot(adata):
        return getattr(adata, ("obs", "var")[axis])

    lhs = gen_adata((10, 10))
    rhs = gen_adata((10, 10))

    assert not get_annot(concat([lhs, rhs], axis=axis)).index.is_unique
    assert get_annot(concat([lhs, rhs], axis=axis, index_unique="-")).index.is_unique


# Leaving out for now. See definition of these values for explanation
# def test_concatenate_uns_types():
#     from anndata._core.merge import UNS_STRATEGIES, UNS_STRATEGIES_TYPE
#     assert set(UNS_STRATEGIES.keys()) == set(UNS_STRATEGIES_TYPE.__args__)