File: test_io_conversion.py

package info (click to toggle)
python-anndata 0.7.5%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 628 kB
  • sloc: python: 7,779; makefile: 8
file content (120 lines) | stat: -rw-r--r-- 3,820 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
"""\
This file contains tests for conversion made during io.
"""
import h5py
import numpy as np
import pytest
from scipy import sparse

import anndata as ad
from anndata.tests.helpers import gen_adata, assert_equal


@pytest.fixture(
    params=[sparse.csr_matrix, sparse.csc_matrix, np.array],
    ids=["scipy-csr", "scipy-csc", "np-array"],
)
def mtx_format(request):
    return request.param


@pytest.fixture(
    params=[sparse.csr_matrix, sparse.csc_matrix],
    ids=["scipy-csr", "scipy-csc"],
)
def spmtx_format(request):
    return request.param


@pytest.fixture(params=[("raw/X",), ("X",), ("X", "raw/X")])
def to_convert(request):
    return request.param


def test_sparse_to_dense_disk(tmp_path, mtx_format, to_convert):
    mem_pth = tmp_path / "orig.h5ad"
    dense_from_mem_pth = tmp_path / "dense_mem.h5ad"
    dense_from_disk_pth = tmp_path / "dense_disk.h5ad"
    mem = gen_adata((50, 50), mtx_format)
    mem.raw = mem

    mem.write_h5ad(mem_pth)
    disk = ad.read_h5ad(mem_pth, backed="r")

    mem.write_h5ad(dense_from_mem_pth, as_dense=to_convert)
    disk.write_h5ad(dense_from_disk_pth, as_dense=to_convert)

    with h5py.File(dense_from_mem_pth, "r") as f:
        for k in to_convert:
            assert isinstance(f[k], h5py.Dataset)
    with h5py.File(dense_from_disk_pth, "r") as f:
        for k in to_convert:
            assert isinstance(f[k], h5py.Dataset)

    for backed in [None, "r"]:
        from_mem = ad.read_h5ad(dense_from_mem_pth, backed=backed)
        from_disk = ad.read_h5ad(dense_from_disk_pth, backed=backed)
        assert_equal(mem, from_mem)
        assert_equal(mem, from_disk)
        assert_equal(disk, from_mem)
        assert_equal(disk, from_disk)


def test_sparse_to_dense_inplace(tmp_path, spmtx_format):
    pth = tmp_path / "adata.h5ad"
    orig = gen_adata((50, 50), spmtx_format)
    orig.raw = orig
    orig.write(pth)
    backed = ad.read_h5ad(pth, backed="r+")
    backed.write(as_dense=("X", "raw/X"))
    new = ad.read_h5ad(pth)

    assert_equal(orig, new)
    assert_equal(backed, new)

    assert isinstance(new.X, np.ndarray)
    assert isinstance(new.raw.X, np.ndarray)
    assert isinstance(orig.X, spmtx_format)
    assert isinstance(orig.raw.X, spmtx_format)
    assert isinstance(backed.X, h5py.Dataset)
    assert isinstance(backed.raw.X, h5py.Dataset)


def test_sparse_to_dense_errors(tmp_path):
    adata = ad.AnnData(X=sparse.random(50, 50, format="csr"))
    adata.layers["like_X"] = adata.X.copy()
    with pytest.raises(ValueError):
        adata.write_h5ad(tmp_path / "failure.h5ad", as_dense=("raw/X"))
        adata.write_h5ad(tmp_path / "failure.h5ad", as_dense=("raw", "X"))
    with pytest.raises(NotImplementedError):
        adata.write_h5ad(tmp_path / "failure.h5ad", as_dense=("layers/like_X"))


def test_dense_to_sparse_memory(tmp_path, spmtx_format, to_convert):
    dense_path = tmp_path / "dense.h5ad"
    orig = gen_adata((50, 50), np.array)
    orig.raw = orig
    orig.write_h5ad(dense_path)
    assert not isinstance(orig.X, sparse.spmatrix)
    assert not isinstance(orig.raw.X, sparse.spmatrix)

    curr = ad.read_h5ad(dense_path, as_sparse=to_convert, as_sparse_fmt=spmtx_format)

    if "X" in to_convert:
        assert isinstance(curr.X, spmtx_format)
    if "raw/X" in to_convert:
        assert isinstance(curr.raw.X, spmtx_format)

    assert_equal(orig, curr)


def test_dense_to_sparse_errors(tmp_path):
    dense_pth = tmp_path / "dense.h5ad"
    adata = ad.AnnData(X=np.ones((50, 50)))
    adata.layers["like_X"] = adata.X.copy()
    adata.write(dense_pth)

    with pytest.raises(NotImplementedError):
        ad.read_h5ad(dense_pth, as_sparse=("X",), as_sparse_fmt=sparse.coo_matrix)
    with pytest.raises(NotImplementedError):
        ad.read_h5ad(dense_pth, as_sparse=("layers/like_X",))