File: test_readwrite.py

package info (click to toggle)
python-anndata 0.7.5%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 628 kB
  • sloc: python: 7,779; makefile: 8
file content (529 lines) | stat: -rw-r--r-- 18,680 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
from importlib.util import find_spec
from pathlib import Path
from string import ascii_letters
import tempfile

import numpy as np
import pandas as pd
from pandas.api.types import is_categorical_dtype
import pytest
from scipy.sparse import csr_matrix, csc_matrix

import anndata as ad
from anndata.utils import asarray

from anndata.tests.helpers import gen_adata, assert_equal

HERE = Path(__file__).parent


# ------------------------------------------------------------------------------
# Some test data
# ------------------------------------------------------------------------------


X_sp = csr_matrix([[1, 0, 0], [3, 0, 0], [5, 6, 0], [0, 0, 0], [0, 0, 0]])

X_list = [[1, 0], [3, 0], [5, 6]]  # data matrix of shape n_obs x n_vars

obs_dict = dict(  # annotation of observations / rows
    row_names=["name1", "name2", "name3"],  # row annotation
    oanno1=["cat1", "cat2", "cat2"],  # categorical annotation
    oanno1b=["cat1", "cat1", "cat1"],  # categorical annotation with one category
    oanno1c=["cat1", "cat1", np.nan],  # categorical annotation with a missing value
    oanno2=["o1", "o2", "o3"],  # string annotation
    oanno3=[2.1, 2.2, 2.3],  # float annotation
    oanno4=[3.3, 1.1, 2.2],  # float annotation
)

var_dict = dict(  # annotation of variables / columns
    vanno1=[3.1, 3.2],
    vanno2=["cat1", "cat1"],  # categorical annotation
    vanno3=[2.1, 2.2],  # float annotation
    vanno4=[3.3, 1.1],  # float annotation
)

uns_dict = dict(  # unstructured annotation
    oanno1_colors=["#000000", "#FFFFFF"],
    uns2=["some annotation"],
    uns3="another annotation",
    uns4=dict(
        a=1,
        b=[2, 3],
        c="4",
        d=["some", "strings"],
        e=np.ones(5),
        f=np.int32(7),
        g=[1, np.float32(2.5)],
    ),
)


@pytest.fixture(params=[{}, dict(compression="gzip")])
def dataset_kwargs(request):
    return request.param


@pytest.fixture(params=["h5ad", "zarr"])
def diskfmt(request):
    return request.param


@pytest.fixture
def rw(backing_h5ad):
    M, N = 100, 101
    orig = gen_adata((M, N))
    orig.write(backing_h5ad)
    curr = ad.read(backing_h5ad)
    return curr, orig


diskfmt2 = diskfmt


# ------------------------------------------------------------------------------
# The test functions
# ------------------------------------------------------------------------------


@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_readwrite_roundtrip(typ, tmp_path, diskfmt, diskfmt2):
    tmpdir = Path(tmp_path)
    pth1 = tmpdir / f"first.{diskfmt}"
    write1 = lambda x: getattr(x, f"write_{diskfmt}")(pth1)
    read1 = lambda: getattr(ad, f"read_{diskfmt}")(pth1)
    pth2 = tmpdir / f"second.{diskfmt2}"
    write2 = lambda x: getattr(x, f"write_{diskfmt2}")(pth2)
    read2 = lambda: getattr(ad, f"read_{diskfmt2}")(pth2)

    adata1 = ad.AnnData(typ(X_list), obs=obs_dict, var=var_dict, uns=uns_dict)
    write1(adata1)
    adata2 = read1()
    write2(adata2)
    adata3 = read2()

    assert_equal(adata2, adata1)
    assert_equal(adata3, adata1)
    assert_equal(adata2, adata1)


@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_readwrite_h5ad(typ, dataset_kwargs, backing_h5ad):
    tmpdir = tempfile.TemporaryDirectory()
    tmpdirpth = Path(tmpdir.name)
    mid_pth = tmpdirpth / "mid.h5ad"

    X = typ(X_list)
    adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
    assert not is_categorical_dtype(adata_src.obs["oanno1"])
    adata_src.raw = adata_src
    adata_src.write(backing_h5ad, **dataset_kwargs)

    adata_mid = ad.read(backing_h5ad)
    adata_mid.write(mid_pth, **dataset_kwargs)

    adata = ad.read_h5ad(mid_pth)
    assert is_categorical_dtype(adata.obs["oanno1"])
    assert not is_categorical_dtype(adata.obs["oanno2"])
    assert adata.obs.index.tolist() == ["name1", "name2", "name3"]
    assert adata.obs["oanno1"].cat.categories.tolist() == ["cat1", "cat2"]
    assert is_categorical_dtype(adata.raw.var["vanno2"])
    assert np.all(adata.obs == adata_src.obs)
    assert np.all(adata.var == adata_src.var)
    assert np.all(adata.var.index == adata_src.var.index)
    assert adata.var.index.dtype == adata_src.var.index.dtype
    assert type(adata.raw.X) is type(adata_src.raw.X)
    assert type(adata.raw.varm) is type(adata_src.raw.varm)
    assert np.allclose(asarray(adata.raw.X), asarray(adata_src.raw.X))
    assert np.all(adata.raw.var == adata_src.raw.var)
    assert isinstance(adata.uns["uns4"]["a"], (int, np.integer))
    assert isinstance(adata_src.uns["uns4"]["a"], (int, np.integer))
    assert type(adata.uns["uns4"]["c"]) is type(adata_src.uns["uns4"]["c"])
    assert_equal(adata, adata_src)


@pytest.mark.skipif(not find_spec("zarr"), reason="Zarr is not installed")
@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_readwrite_zarr(typ, tmp_path):
    X = typ(X_list)
    adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
    adata_src.raw = adata_src
    assert not is_categorical_dtype(adata_src.obs["oanno1"])
    adata_src.write_zarr(tmp_path / "test_zarr_dir", chunks=True)

    adata = ad.read_zarr(tmp_path / "test_zarr_dir")
    assert is_categorical_dtype(adata.obs["oanno1"])
    assert not is_categorical_dtype(adata.obs["oanno2"])
    assert adata.obs.index.tolist() == ["name1", "name2", "name3"]
    assert adata.obs["oanno1"].cat.categories.tolist() == ["cat1", "cat2"]
    assert is_categorical_dtype(adata.raw.var["vanno2"])
    assert np.all(adata.obs == adata_src.obs)
    assert np.all(adata.var == adata_src.var)
    assert np.all(adata.var.index == adata_src.var.index)
    assert adata.var.index.dtype == adata_src.var.index.dtype
    assert type(adata.raw.X) is type(adata_src.raw.X)
    assert np.allclose(asarray(adata.raw.X), asarray(adata_src.raw.X))
    assert np.all(adata.raw.var == adata_src.raw.var)
    assert isinstance(adata.uns["uns4"]["a"], (int, np.integer))
    assert isinstance(adata_src.uns["uns4"]["a"], (int, np.integer))
    assert type(adata.uns["uns4"]["c"]) is type(adata_src.uns["uns4"]["c"])
    assert_equal(adata, adata_src)


@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_readwrite_maintain_X_dtype(typ, backing_h5ad):
    X = typ(X_list)
    adata_src = ad.AnnData(X, dtype="int8")
    adata_src.write(backing_h5ad)

    adata = ad.read(backing_h5ad)
    assert adata.X.dtype == adata_src.X.dtype


def test_read_write_maintain_obsmvarm_dtypes(rw):
    curr, orig = rw

    assert type(orig.obsm["array"]) is type(curr.obsm["array"])
    assert np.all(orig.obsm["array"] == curr.obsm["array"])
    assert np.all(orig.varm["array"] == curr.varm["array"])
    assert type(orig.obsm["sparse"]) is type(curr.obsm["sparse"])
    assert not np.any((orig.obsm["sparse"] != curr.obsm["sparse"]).toarray())
    assert not np.any((orig.varm["sparse"] != curr.varm["sparse"]).toarray())
    assert type(orig.obsm["df"]) is type(curr.obsm["df"])
    assert np.all(orig.obsm["df"] == curr.obsm["df"])
    assert np.all(orig.varm["df"] == curr.varm["df"])


def test_maintain_layers(rw):
    curr, orig = rw

    assert type(orig.layers["array"]) is type(curr.layers["array"])
    assert np.all(orig.layers["array"] == curr.layers["array"])
    assert type(orig.layers["sparse"]) is type(curr.layers["sparse"])
    assert not np.any((orig.layers["sparse"] != curr.layers["sparse"]).toarray())


@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_readwrite_h5ad_one_dimension(typ, backing_h5ad):
    X = typ(X_list)
    adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
    adata_one = adata_src[:, 0].copy()
    adata_one.write(backing_h5ad)
    adata = ad.read(backing_h5ad)
    assert adata.shape == (3, 1)
    assert_equal(adata, adata_one)


@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_readwrite_backed(typ, backing_h5ad):
    X = typ(X_list)
    adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
    adata_src.filename = backing_h5ad  # change to backed mode
    adata_src.write()

    adata = ad.read(backing_h5ad)
    assert is_categorical_dtype(adata.obs["oanno1"])
    assert not is_categorical_dtype(adata.obs["oanno2"])
    assert adata.obs.index.tolist() == ["name1", "name2", "name3"]
    assert adata.obs["oanno1"].cat.categories.tolist() == ["cat1", "cat2"]
    assert_equal(adata, adata_src)


@pytest.mark.parametrize("typ", [np.array, csr_matrix, csc_matrix])
def test_readwrite_equivalent_h5ad_zarr(typ):
    tmpdir = tempfile.TemporaryDirectory()
    tmpdirpth = Path(tmpdir.name)
    h5ad_pth = tmpdirpth / "adata.h5ad"
    zarr_pth = tmpdirpth / "adata.zarr"

    M, N = 100, 101
    adata = gen_adata((M, N), X_type=typ)
    adata.raw = adata

    adata.write_h5ad(h5ad_pth)
    adata.write_zarr(zarr_pth)
    from_h5ad = ad.read_h5ad(h5ad_pth)
    from_zarr = ad.read_zarr(zarr_pth)

    assert_equal(from_h5ad, from_zarr, exact=True)


def test_changed_obs_var_names(tmp_path, diskfmt):
    filepth = tmp_path / f"test.{diskfmt}"

    orig = gen_adata((10, 10))
    orig.obs_names.name = "obs"
    orig.var_names.name = "var"
    modified = orig.copy()
    modified.obs_names.name = "cells"
    modified.var_names.name = "genes"

    getattr(orig, f"write_{diskfmt}")(filepth)
    read = getattr(ad, f"read_{diskfmt}")(filepth)

    assert_equal(orig, read, exact=True)
    assert orig.var.index.name == "var"
    assert read.obs.index.name == "obs"
    with pytest.raises(AssertionError):
        assert_equal(orig, modified, exact=True)
    with pytest.raises(AssertionError):
        assert_equal(read, modified, exact=True)


@pytest.mark.skipif(not find_spec("loompy"), reason="Loompy is not installed")
@pytest.mark.parametrize("typ", [np.array, csr_matrix])
@pytest.mark.parametrize("obsm_names", [{}, dict(X_composed=["oanno3", "oanno4"])])
@pytest.mark.parametrize("varm_names", [{}, dict(X_composed2=["vanno3", "vanno4"])])
def test_readwrite_loom(typ, obsm_names, varm_names, tmp_path):
    X = typ(X_list)
    adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
    adata_src.obsm["X_a"] = np.zeros((adata_src.n_obs, 2))
    adata_src.varm["X_b"] = np.zeros((adata_src.n_vars, 3))
    adata_src.write_loom(tmp_path / "test.loom", write_obsm_varm=True)

    adata = ad.read_loom(
        tmp_path / "test.loom",
        sparse=typ is csr_matrix,
        obsm_names=obsm_names,
        varm_names=varm_names,
        cleanup=True,
    )
    if isinstance(X, np.ndarray):
        assert np.allclose(adata.X, X)
    else:
        # TODO: this should not be necessary
        assert np.allclose(adata.X.toarray(), X.toarray())
    assert "X_a" in adata.obsm_keys() and adata.obsm["X_a"].shape[1] == 2
    assert "X_b" in adata.varm_keys() and adata.varm["X_b"].shape[1] == 3
    # as we called with `cleanup=True`
    assert "oanno1b" in adata.uns["loom-obs"]
    assert "vanno2" in adata.uns["loom-var"]
    for k, v in obsm_names.items():
        assert k in adata.obsm_keys() and adata.obsm[k].shape[1] == len(v)
    for k, v in varm_names.items():
        assert k in adata.varm_keys() and adata.varm[k].shape[1] == len(v)


def test_read_csv():
    adata = ad.read_csv(HERE / "adata.csv")
    assert adata.obs_names.tolist() == ["r1", "r2", "r3"]
    assert adata.var_names.tolist() == ["c1", "c2"]
    assert adata.X.tolist() == X_list


def test_read_tsv_strpath():
    adata = ad.read_text(str(HERE / "adata-comments.tsv"), "\t")
    assert adata.obs_names.tolist() == ["r1", "r2", "r3"]
    assert adata.var_names.tolist() == ["c1", "c2"]
    assert adata.X.tolist() == X_list


def test_read_tsv_iter():
    with (HERE / "adata-comments.tsv").open() as f:
        adata = ad.read_text(f, "\t")
    assert adata.obs_names.tolist() == ["r1", "r2", "r3"]
    assert adata.var_names.tolist() == ["c1", "c2"]
    assert adata.X.tolist() == X_list


@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_write_csv(typ, tmp_path):
    X = typ(X_list)
    adata = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
    adata.write_csvs(tmp_path / "test_csv_dir", skip_data=False)


@pytest.mark.parametrize(
    ["read", "write", "name"],
    [
        pytest.param(ad.read_h5ad, ad._io.write._write_h5ad, "test_empty.h5ad"),
        pytest.param(
            ad.read_loom,
            ad._io.write_loom,
            "test_empty.loom",
            marks=pytest.mark.xfail(reason="Loom can’t handle 0×0 matrices"),
        ),
        pytest.param(ad.read_zarr, ad._io.write_zarr, "test_empty.zarr"),
        pytest.param(
            ad.read_zarr,
            ad._io.write_zarr,
            "test_empty.zip",
            marks=pytest.mark.xfail(reason="Zarr zip storage doesn’t seem to work…"),
        ),
    ],
)
def test_readwrite_hdf5_empty(read, write, name, tmp_path):
    if read is ad.read_zarr:
        pytest.importorskip("zarr")
    adata = ad.AnnData(uns=dict(empty=np.array([], dtype=float)))
    write(tmp_path / name, adata)
    ad_read = read(tmp_path / name)
    assert ad_read.uns["empty"].shape == (0,)


def test_read_excel():
    adata = ad.read_excel(HERE / "data/excel.xlsx", "Sheet1", dtype=int)
    assert adata.X.tolist() == X_list


def test_write_categorical(tmp_path, diskfmt):
    adata_pth = tmp_path / f"adata.{diskfmt}"
    orig = ad.AnnData(
        X=np.ones((5, 5)),
        obs=pd.DataFrame(
            dict(
                cat1=["a", "a", "b", np.nan, np.nan],
                cat2=pd.Categorical(["a", "a", "b", np.nan, np.nan]),
            )
        ),
    )
    getattr(orig, f"write_{diskfmt}")(adata_pth)
    curr = getattr(ad, f"read_{diskfmt}")(adata_pth)
    assert np.all(orig.obs.notna() == curr.obs.notna())
    assert np.all(orig.obs.stack().dropna() == curr.obs.stack().dropna())


def test_write_categorical_index(tmp_path, diskfmt):
    adata_pth = tmp_path / f"adata.{diskfmt}"
    orig = ad.AnnData(
        X=np.ones((5, 5)),
        uns={"df": pd.DataFrame(index=pd.Categorical(list("aabcd")))},
    )
    getattr(orig, f"write_{diskfmt}")(adata_pth)
    curr = getattr(ad, f"read_{diskfmt}")(adata_pth)
    # Also covered by next assertion, but checking this value specifically
    pd.testing.assert_index_equal(
        orig.uns["df"].index, curr.uns["df"].index, exact=True
    )
    assert_equal(orig, curr, exact=True)


def test_dataframe_reserved_columns(tmp_path, diskfmt):
    reserved = ("_index", "__categories")
    adata_pth = tmp_path / f"adata.{diskfmt}"
    orig = ad.AnnData(X=np.ones((5, 5)))
    for colname in reserved:
        to_write = orig.copy()
        to_write.obs[colname] = np.ones(5)
        with pytest.raises(ValueError) as e:
            getattr(to_write, f"write_{diskfmt}")(adata_pth)
        assert colname in str(e.value)
    for colname in reserved:
        to_write = orig.copy()
        to_write.varm["df"] = pd.DataFrame(
            {colname: list("aabcd")}, index=to_write.var_names
        )
        with pytest.raises(ValueError) as e:
            getattr(to_write, f"write_{diskfmt}")(adata_pth)
        assert colname in str(e.value)


def test_write_large_categorical(tmp_path, diskfmt):
    M = 30_000
    N = 1000
    ls = np.array(list(ascii_letters))

    def random_cats(n):
        cats = {
            "".join(np.random.choice(ls, np.random.choice(range(5, 30))))
            for _ in range(n)
        }
        while len(cats) < n:  # For the rare case that there’s duplicates
            cats |= random_cats(n - len(cats))
        return cats

    cats = np.array(sorted(random_cats(10_000)))
    adata_pth = tmp_path / f"adata.{diskfmt}"
    n_cats = len(np.unique(cats))
    orig = ad.AnnData(
        csr_matrix(([1], ([0], [0])), shape=(M, N)),
        obs=dict(
            cat1=cats[np.random.choice(n_cats, M)],
            cat2=pd.Categorical.from_codes(np.random.choice(n_cats, M), cats),
        ),
    )
    getattr(orig, f"write_{diskfmt}")(adata_pth)
    curr = getattr(ad, f"read_{diskfmt}")(adata_pth)
    assert_equal(orig, curr)


def test_zarr_chunk_X(tmp_path):
    import zarr

    zarr_pth = Path(tmp_path) / "test.zarr"
    adata = gen_adata((100, 100), X_type=np.array)
    adata.write_zarr(zarr_pth, chunks=(10, 10))

    z = zarr.open(str(zarr_pth))  # As of v2.3.2 zarr won’t take a Path
    assert z["X"].chunks == (10, 10)
    from_zarr = ad.read_zarr(zarr_pth)
    assert_equal(from_zarr, adata)


################################
# Round-tripping scanpy datasets
################################

diskfmt2 = diskfmt


@pytest.mark.skipif(not find_spec("scanpy"), reason="Scanpy is not installed")
def test_scanpy_pbmc68k(tmp_path, diskfmt, diskfmt2):
    read1 = lambda pth: getattr(ad, f"read_{diskfmt}")(pth)
    write1 = lambda adata, pth: getattr(adata, f"write_{diskfmt}")(pth)
    read2 = lambda pth: getattr(ad, f"read_{diskfmt2}")(pth)
    write2 = lambda adata, pth: getattr(adata, f"write_{diskfmt2}")(pth)

    filepth1 = tmp_path / f"test1.{diskfmt}"
    filepth2 = tmp_path / f"test2.{diskfmt2}"

    import scanpy as sc

    pbmc = sc.datasets.pbmc68k_reduced()
    write1(pbmc, filepth1)
    from_disk1 = read1(filepth1)  # Do we read okay
    write2(from_disk1, filepth2)  # Can we round trip
    from_disk2 = read2(filepth2)

    assert_equal(pbmc, from_disk1)  # Not expected to be exact due to `nan`s
    assert_equal(pbmc, from_disk2)


@pytest.mark.skipif(not find_spec("scanpy"), reason="Scanpy is not installed")
def test_scanpy_krumsiek11(tmp_path, diskfmt):
    filepth = tmp_path / f"test.{diskfmt}"
    import scanpy as sc

    orig = sc.datasets.krumsiek11()
    del orig.uns["highlights"]  # Can’t write int keys
    getattr(orig, f"write_{diskfmt}")(filepth)
    read = getattr(ad, f"read_{diskfmt}")(filepth)

    assert_equal(orig, read, exact=True)


# Checking if we can read legacy zarr files
# TODO: Check how I should add this file to the repo
@pytest.mark.skipif(not find_spec("scanpy"), reason="Scanpy is not installed")
@pytest.mark.skipif(
    not Path(HERE / "data/pbmc68k_reduced_legacy.zarr.zip").is_file(),
    reason="File not present.",
)
def test_backwards_compat_zarr():
    import scanpy as sc
    import zarr

    pbmc_orig = sc.datasets.pbmc68k_reduced()
    # Old zarr writer couldn’t do sparse arrays
    pbmc_orig.raw._X = pbmc_orig.raw.X.toarray()
    del pbmc_orig.uns["neighbors"]
    # Since these have moved, see PR #337
    del pbmc_orig.obsp["distances"]
    del pbmc_orig.obsp["connectivities"]

    # This was written out with anndata=0.6.22.post1
    zarrpth = HERE / "data/pbmc68k_reduced_legacy.zarr.zip"
    with zarr.ZipStore(zarrpth, mode="r") as z:
        pbmc_zarr = ad.read_zarr(z)

    assert_equal(pbmc_zarr, pbmc_orig)