1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
from importlib.util import find_spec
from pathlib import Path
from string import ascii_letters
import tempfile
import numpy as np
import pandas as pd
from pandas.api.types import is_categorical_dtype
import pytest
from scipy.sparse import csr_matrix, csc_matrix
import anndata as ad
from anndata.utils import asarray
from anndata.tests.helpers import gen_adata, assert_equal
HERE = Path(__file__).parent
# ------------------------------------------------------------------------------
# Some test data
# ------------------------------------------------------------------------------
X_sp = csr_matrix([[1, 0, 0], [3, 0, 0], [5, 6, 0], [0, 0, 0], [0, 0, 0]])
X_list = [[1, 0], [3, 0], [5, 6]] # data matrix of shape n_obs x n_vars
obs_dict = dict( # annotation of observations / rows
row_names=["name1", "name2", "name3"], # row annotation
oanno1=["cat1", "cat2", "cat2"], # categorical annotation
oanno1b=["cat1", "cat1", "cat1"], # categorical annotation with one category
oanno1c=["cat1", "cat1", np.nan], # categorical annotation with a missing value
oanno2=["o1", "o2", "o3"], # string annotation
oanno3=[2.1, 2.2, 2.3], # float annotation
oanno4=[3.3, 1.1, 2.2], # float annotation
)
var_dict = dict( # annotation of variables / columns
vanno1=[3.1, 3.2],
vanno2=["cat1", "cat1"], # categorical annotation
vanno3=[2.1, 2.2], # float annotation
vanno4=[3.3, 1.1], # float annotation
)
uns_dict = dict( # unstructured annotation
oanno1_colors=["#000000", "#FFFFFF"],
uns2=["some annotation"],
uns3="another annotation",
uns4=dict(
a=1,
b=[2, 3],
c="4",
d=["some", "strings"],
e=np.ones(5),
f=np.int32(7),
g=[1, np.float32(2.5)],
),
)
@pytest.fixture(params=[{}, dict(compression="gzip")])
def dataset_kwargs(request):
return request.param
@pytest.fixture(params=["h5ad", "zarr"])
def diskfmt(request):
return request.param
@pytest.fixture
def rw(backing_h5ad):
M, N = 100, 101
orig = gen_adata((M, N))
orig.write(backing_h5ad)
curr = ad.read(backing_h5ad)
return curr, orig
diskfmt2 = diskfmt
# ------------------------------------------------------------------------------
# The test functions
# ------------------------------------------------------------------------------
@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_readwrite_roundtrip(typ, tmp_path, diskfmt, diskfmt2):
tmpdir = Path(tmp_path)
pth1 = tmpdir / f"first.{diskfmt}"
write1 = lambda x: getattr(x, f"write_{diskfmt}")(pth1)
read1 = lambda: getattr(ad, f"read_{diskfmt}")(pth1)
pth2 = tmpdir / f"second.{diskfmt2}"
write2 = lambda x: getattr(x, f"write_{diskfmt2}")(pth2)
read2 = lambda: getattr(ad, f"read_{diskfmt2}")(pth2)
adata1 = ad.AnnData(typ(X_list), obs=obs_dict, var=var_dict, uns=uns_dict)
write1(adata1)
adata2 = read1()
write2(adata2)
adata3 = read2()
assert_equal(adata2, adata1)
assert_equal(adata3, adata1)
assert_equal(adata2, adata1)
@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_readwrite_h5ad(typ, dataset_kwargs, backing_h5ad):
tmpdir = tempfile.TemporaryDirectory()
tmpdirpth = Path(tmpdir.name)
mid_pth = tmpdirpth / "mid.h5ad"
X = typ(X_list)
adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
assert not is_categorical_dtype(adata_src.obs["oanno1"])
adata_src.raw = adata_src
adata_src.write(backing_h5ad, **dataset_kwargs)
adata_mid = ad.read(backing_h5ad)
adata_mid.write(mid_pth, **dataset_kwargs)
adata = ad.read_h5ad(mid_pth)
assert is_categorical_dtype(adata.obs["oanno1"])
assert not is_categorical_dtype(adata.obs["oanno2"])
assert adata.obs.index.tolist() == ["name1", "name2", "name3"]
assert adata.obs["oanno1"].cat.categories.tolist() == ["cat1", "cat2"]
assert is_categorical_dtype(adata.raw.var["vanno2"])
assert np.all(adata.obs == adata_src.obs)
assert np.all(adata.var == adata_src.var)
assert np.all(adata.var.index == adata_src.var.index)
assert adata.var.index.dtype == adata_src.var.index.dtype
assert type(adata.raw.X) is type(adata_src.raw.X)
assert type(adata.raw.varm) is type(adata_src.raw.varm)
assert np.allclose(asarray(adata.raw.X), asarray(adata_src.raw.X))
assert np.all(adata.raw.var == adata_src.raw.var)
assert isinstance(adata.uns["uns4"]["a"], (int, np.integer))
assert isinstance(adata_src.uns["uns4"]["a"], (int, np.integer))
assert type(adata.uns["uns4"]["c"]) is type(adata_src.uns["uns4"]["c"])
assert_equal(adata, adata_src)
@pytest.mark.skipif(not find_spec("zarr"), reason="Zarr is not installed")
@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_readwrite_zarr(typ, tmp_path):
X = typ(X_list)
adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
adata_src.raw = adata_src
assert not is_categorical_dtype(adata_src.obs["oanno1"])
adata_src.write_zarr(tmp_path / "test_zarr_dir", chunks=True)
adata = ad.read_zarr(tmp_path / "test_zarr_dir")
assert is_categorical_dtype(adata.obs["oanno1"])
assert not is_categorical_dtype(adata.obs["oanno2"])
assert adata.obs.index.tolist() == ["name1", "name2", "name3"]
assert adata.obs["oanno1"].cat.categories.tolist() == ["cat1", "cat2"]
assert is_categorical_dtype(adata.raw.var["vanno2"])
assert np.all(adata.obs == adata_src.obs)
assert np.all(adata.var == adata_src.var)
assert np.all(adata.var.index == adata_src.var.index)
assert adata.var.index.dtype == adata_src.var.index.dtype
assert type(adata.raw.X) is type(adata_src.raw.X)
assert np.allclose(asarray(adata.raw.X), asarray(adata_src.raw.X))
assert np.all(adata.raw.var == adata_src.raw.var)
assert isinstance(adata.uns["uns4"]["a"], (int, np.integer))
assert isinstance(adata_src.uns["uns4"]["a"], (int, np.integer))
assert type(adata.uns["uns4"]["c"]) is type(adata_src.uns["uns4"]["c"])
assert_equal(adata, adata_src)
@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_readwrite_maintain_X_dtype(typ, backing_h5ad):
X = typ(X_list)
adata_src = ad.AnnData(X, dtype="int8")
adata_src.write(backing_h5ad)
adata = ad.read(backing_h5ad)
assert adata.X.dtype == adata_src.X.dtype
def test_read_write_maintain_obsmvarm_dtypes(rw):
curr, orig = rw
assert type(orig.obsm["array"]) is type(curr.obsm["array"])
assert np.all(orig.obsm["array"] == curr.obsm["array"])
assert np.all(orig.varm["array"] == curr.varm["array"])
assert type(orig.obsm["sparse"]) is type(curr.obsm["sparse"])
assert not np.any((orig.obsm["sparse"] != curr.obsm["sparse"]).toarray())
assert not np.any((orig.varm["sparse"] != curr.varm["sparse"]).toarray())
assert type(orig.obsm["df"]) is type(curr.obsm["df"])
assert np.all(orig.obsm["df"] == curr.obsm["df"])
assert np.all(orig.varm["df"] == curr.varm["df"])
def test_maintain_layers(rw):
curr, orig = rw
assert type(orig.layers["array"]) is type(curr.layers["array"])
assert np.all(orig.layers["array"] == curr.layers["array"])
assert type(orig.layers["sparse"]) is type(curr.layers["sparse"])
assert not np.any((orig.layers["sparse"] != curr.layers["sparse"]).toarray())
@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_readwrite_h5ad_one_dimension(typ, backing_h5ad):
X = typ(X_list)
adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
adata_one = adata_src[:, 0].copy()
adata_one.write(backing_h5ad)
adata = ad.read(backing_h5ad)
assert adata.shape == (3, 1)
assert_equal(adata, adata_one)
@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_readwrite_backed(typ, backing_h5ad):
X = typ(X_list)
adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
adata_src.filename = backing_h5ad # change to backed mode
adata_src.write()
adata = ad.read(backing_h5ad)
assert is_categorical_dtype(adata.obs["oanno1"])
assert not is_categorical_dtype(adata.obs["oanno2"])
assert adata.obs.index.tolist() == ["name1", "name2", "name3"]
assert adata.obs["oanno1"].cat.categories.tolist() == ["cat1", "cat2"]
assert_equal(adata, adata_src)
@pytest.mark.parametrize("typ", [np.array, csr_matrix, csc_matrix])
def test_readwrite_equivalent_h5ad_zarr(typ):
tmpdir = tempfile.TemporaryDirectory()
tmpdirpth = Path(tmpdir.name)
h5ad_pth = tmpdirpth / "adata.h5ad"
zarr_pth = tmpdirpth / "adata.zarr"
M, N = 100, 101
adata = gen_adata((M, N), X_type=typ)
adata.raw = adata
adata.write_h5ad(h5ad_pth)
adata.write_zarr(zarr_pth)
from_h5ad = ad.read_h5ad(h5ad_pth)
from_zarr = ad.read_zarr(zarr_pth)
assert_equal(from_h5ad, from_zarr, exact=True)
def test_changed_obs_var_names(tmp_path, diskfmt):
filepth = tmp_path / f"test.{diskfmt}"
orig = gen_adata((10, 10))
orig.obs_names.name = "obs"
orig.var_names.name = "var"
modified = orig.copy()
modified.obs_names.name = "cells"
modified.var_names.name = "genes"
getattr(orig, f"write_{diskfmt}")(filepth)
read = getattr(ad, f"read_{diskfmt}")(filepth)
assert_equal(orig, read, exact=True)
assert orig.var.index.name == "var"
assert read.obs.index.name == "obs"
with pytest.raises(AssertionError):
assert_equal(orig, modified, exact=True)
with pytest.raises(AssertionError):
assert_equal(read, modified, exact=True)
@pytest.mark.skipif(not find_spec("loompy"), reason="Loompy is not installed")
@pytest.mark.parametrize("typ", [np.array, csr_matrix])
@pytest.mark.parametrize("obsm_names", [{}, dict(X_composed=["oanno3", "oanno4"])])
@pytest.mark.parametrize("varm_names", [{}, dict(X_composed2=["vanno3", "vanno4"])])
def test_readwrite_loom(typ, obsm_names, varm_names, tmp_path):
X = typ(X_list)
adata_src = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
adata_src.obsm["X_a"] = np.zeros((adata_src.n_obs, 2))
adata_src.varm["X_b"] = np.zeros((adata_src.n_vars, 3))
adata_src.write_loom(tmp_path / "test.loom", write_obsm_varm=True)
adata = ad.read_loom(
tmp_path / "test.loom",
sparse=typ is csr_matrix,
obsm_names=obsm_names,
varm_names=varm_names,
cleanup=True,
)
if isinstance(X, np.ndarray):
assert np.allclose(adata.X, X)
else:
# TODO: this should not be necessary
assert np.allclose(adata.X.toarray(), X.toarray())
assert "X_a" in adata.obsm_keys() and adata.obsm["X_a"].shape[1] == 2
assert "X_b" in adata.varm_keys() and adata.varm["X_b"].shape[1] == 3
# as we called with `cleanup=True`
assert "oanno1b" in adata.uns["loom-obs"]
assert "vanno2" in adata.uns["loom-var"]
for k, v in obsm_names.items():
assert k in adata.obsm_keys() and adata.obsm[k].shape[1] == len(v)
for k, v in varm_names.items():
assert k in adata.varm_keys() and adata.varm[k].shape[1] == len(v)
def test_read_csv():
adata = ad.read_csv(HERE / "adata.csv")
assert adata.obs_names.tolist() == ["r1", "r2", "r3"]
assert adata.var_names.tolist() == ["c1", "c2"]
assert adata.X.tolist() == X_list
def test_read_tsv_strpath():
adata = ad.read_text(str(HERE / "adata-comments.tsv"), "\t")
assert adata.obs_names.tolist() == ["r1", "r2", "r3"]
assert adata.var_names.tolist() == ["c1", "c2"]
assert adata.X.tolist() == X_list
def test_read_tsv_iter():
with (HERE / "adata-comments.tsv").open() as f:
adata = ad.read_text(f, "\t")
assert adata.obs_names.tolist() == ["r1", "r2", "r3"]
assert adata.var_names.tolist() == ["c1", "c2"]
assert adata.X.tolist() == X_list
@pytest.mark.parametrize("typ", [np.array, csr_matrix])
def test_write_csv(typ, tmp_path):
X = typ(X_list)
adata = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)
adata.write_csvs(tmp_path / "test_csv_dir", skip_data=False)
@pytest.mark.parametrize(
["read", "write", "name"],
[
pytest.param(ad.read_h5ad, ad._io.write._write_h5ad, "test_empty.h5ad"),
pytest.param(
ad.read_loom,
ad._io.write_loom,
"test_empty.loom",
marks=pytest.mark.xfail(reason="Loom can’t handle 0×0 matrices"),
),
pytest.param(ad.read_zarr, ad._io.write_zarr, "test_empty.zarr"),
pytest.param(
ad.read_zarr,
ad._io.write_zarr,
"test_empty.zip",
marks=pytest.mark.xfail(reason="Zarr zip storage doesn’t seem to work…"),
),
],
)
def test_readwrite_hdf5_empty(read, write, name, tmp_path):
if read is ad.read_zarr:
pytest.importorskip("zarr")
adata = ad.AnnData(uns=dict(empty=np.array([], dtype=float)))
write(tmp_path / name, adata)
ad_read = read(tmp_path / name)
assert ad_read.uns["empty"].shape == (0,)
def test_read_excel():
adata = ad.read_excel(HERE / "data/excel.xlsx", "Sheet1", dtype=int)
assert adata.X.tolist() == X_list
def test_write_categorical(tmp_path, diskfmt):
adata_pth = tmp_path / f"adata.{diskfmt}"
orig = ad.AnnData(
X=np.ones((5, 5)),
obs=pd.DataFrame(
dict(
cat1=["a", "a", "b", np.nan, np.nan],
cat2=pd.Categorical(["a", "a", "b", np.nan, np.nan]),
)
),
)
getattr(orig, f"write_{diskfmt}")(adata_pth)
curr = getattr(ad, f"read_{diskfmt}")(adata_pth)
assert np.all(orig.obs.notna() == curr.obs.notna())
assert np.all(orig.obs.stack().dropna() == curr.obs.stack().dropna())
def test_write_categorical_index(tmp_path, diskfmt):
adata_pth = tmp_path / f"adata.{diskfmt}"
orig = ad.AnnData(
X=np.ones((5, 5)),
uns={"df": pd.DataFrame(index=pd.Categorical(list("aabcd")))},
)
getattr(orig, f"write_{diskfmt}")(adata_pth)
curr = getattr(ad, f"read_{diskfmt}")(adata_pth)
# Also covered by next assertion, but checking this value specifically
pd.testing.assert_index_equal(
orig.uns["df"].index, curr.uns["df"].index, exact=True
)
assert_equal(orig, curr, exact=True)
def test_dataframe_reserved_columns(tmp_path, diskfmt):
reserved = ("_index", "__categories")
adata_pth = tmp_path / f"adata.{diskfmt}"
orig = ad.AnnData(X=np.ones((5, 5)))
for colname in reserved:
to_write = orig.copy()
to_write.obs[colname] = np.ones(5)
with pytest.raises(ValueError) as e:
getattr(to_write, f"write_{diskfmt}")(adata_pth)
assert colname in str(e.value)
for colname in reserved:
to_write = orig.copy()
to_write.varm["df"] = pd.DataFrame(
{colname: list("aabcd")}, index=to_write.var_names
)
with pytest.raises(ValueError) as e:
getattr(to_write, f"write_{diskfmt}")(adata_pth)
assert colname in str(e.value)
def test_write_large_categorical(tmp_path, diskfmt):
M = 30_000
N = 1000
ls = np.array(list(ascii_letters))
def random_cats(n):
cats = {
"".join(np.random.choice(ls, np.random.choice(range(5, 30))))
for _ in range(n)
}
while len(cats) < n: # For the rare case that there’s duplicates
cats |= random_cats(n - len(cats))
return cats
cats = np.array(sorted(random_cats(10_000)))
adata_pth = tmp_path / f"adata.{diskfmt}"
n_cats = len(np.unique(cats))
orig = ad.AnnData(
csr_matrix(([1], ([0], [0])), shape=(M, N)),
obs=dict(
cat1=cats[np.random.choice(n_cats, M)],
cat2=pd.Categorical.from_codes(np.random.choice(n_cats, M), cats),
),
)
getattr(orig, f"write_{diskfmt}")(adata_pth)
curr = getattr(ad, f"read_{diskfmt}")(adata_pth)
assert_equal(orig, curr)
def test_zarr_chunk_X(tmp_path):
import zarr
zarr_pth = Path(tmp_path) / "test.zarr"
adata = gen_adata((100, 100), X_type=np.array)
adata.write_zarr(zarr_pth, chunks=(10, 10))
z = zarr.open(str(zarr_pth)) # As of v2.3.2 zarr won’t take a Path
assert z["X"].chunks == (10, 10)
from_zarr = ad.read_zarr(zarr_pth)
assert_equal(from_zarr, adata)
################################
# Round-tripping scanpy datasets
################################
diskfmt2 = diskfmt
@pytest.mark.skipif(not find_spec("scanpy"), reason="Scanpy is not installed")
def test_scanpy_pbmc68k(tmp_path, diskfmt, diskfmt2):
read1 = lambda pth: getattr(ad, f"read_{diskfmt}")(pth)
write1 = lambda adata, pth: getattr(adata, f"write_{diskfmt}")(pth)
read2 = lambda pth: getattr(ad, f"read_{diskfmt2}")(pth)
write2 = lambda adata, pth: getattr(adata, f"write_{diskfmt2}")(pth)
filepth1 = tmp_path / f"test1.{diskfmt}"
filepth2 = tmp_path / f"test2.{diskfmt2}"
import scanpy as sc
pbmc = sc.datasets.pbmc68k_reduced()
write1(pbmc, filepth1)
from_disk1 = read1(filepth1) # Do we read okay
write2(from_disk1, filepth2) # Can we round trip
from_disk2 = read2(filepth2)
assert_equal(pbmc, from_disk1) # Not expected to be exact due to `nan`s
assert_equal(pbmc, from_disk2)
@pytest.mark.skipif(not find_spec("scanpy"), reason="Scanpy is not installed")
def test_scanpy_krumsiek11(tmp_path, diskfmt):
filepth = tmp_path / f"test.{diskfmt}"
import scanpy as sc
orig = sc.datasets.krumsiek11()
del orig.uns["highlights"] # Can’t write int keys
getattr(orig, f"write_{diskfmt}")(filepth)
read = getattr(ad, f"read_{diskfmt}")(filepth)
assert_equal(orig, read, exact=True)
# Checking if we can read legacy zarr files
# TODO: Check how I should add this file to the repo
@pytest.mark.skipif(not find_spec("scanpy"), reason="Scanpy is not installed")
@pytest.mark.skipif(
not Path(HERE / "data/pbmc68k_reduced_legacy.zarr.zip").is_file(),
reason="File not present.",
)
def test_backwards_compat_zarr():
import scanpy as sc
import zarr
pbmc_orig = sc.datasets.pbmc68k_reduced()
# Old zarr writer couldn’t do sparse arrays
pbmc_orig.raw._X = pbmc_orig.raw.X.toarray()
del pbmc_orig.uns["neighbors"]
# Since these have moved, see PR #337
del pbmc_orig.obsp["distances"]
del pbmc_orig.obsp["connectivities"]
# This was written out with anndata=0.6.22.post1
zarrpth = HERE / "data/pbmc68k_reduced_legacy.zarr.zip"
with zarr.ZipStore(zarrpth, mode="r") as z:
pbmc_zarr = ad.read_zarr(z)
assert_equal(pbmc_zarr, pbmc_orig)
|