1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
from operator import mul
import joblib
import numpy as np
from scipy import sparse
import pandas as pd
import pytest
import anndata as ad
from anndata._core.index import _normalize_index
from anndata.utils import asarray
from anndata.tests.helpers import (
gen_adata,
subset_func,
slice_subset,
single_subset,
assert_equal,
)
# ------------------------------------------------------------------------------
# Some test data
# ------------------------------------------------------------------------------
# data matrix of shape n_obs x n_vars
X_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
# annotation of observations / rows
obs_dict = dict(
row_names=["name1", "name2", "name3"], # row annotation
oanno1=["cat1", "cat2", "cat2"], # categorical annotation
oanno2=["o1", "o2", "o3"], # string annotation
oanno3=[2.1, 2.2, 2.3], # float annotation
)
# annotation of variables / columns
var_dict = dict(vanno1=[3.1, 3.2, 3.3])
# unstructured annotation
uns_dict = dict(oanno1_colors=["#000000", "#FFFFFF"], uns2=["some annotation"])
subset_func2 = subset_func
class NDArraySubclass(np.ndarray):
def view(self, dtype=None, typ=None):
return self
@pytest.fixture
def adata():
adata = ad.AnnData(np.zeros((100, 100)))
adata.obsm["o"] = np.zeros((100, 50))
adata.varm["o"] = np.zeros((100, 50))
return adata
@pytest.fixture(params=[asarray, sparse.csr_matrix, sparse.csc_matrix])
def adata_parameterized(request):
return gen_adata(shape=(200, 300), X_type=request.param)
@pytest.fixture(
params=[np.array, sparse.csr_matrix, sparse.csc_matrix],
ids=["np_array", "scipy_csr", "scipy_csc"],
)
def matrix_type(request):
return request.param
@pytest.fixture(params=["layers", "obsm", "varm"])
def mapping_name(request):
return request.param
# ------------------------------------------------------------------------------
# The test functions
# ------------------------------------------------------------------------------
def test_views():
X = np.array(X_list)
adata = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict, dtype="int32")
assert adata[:, 0].is_view
assert adata[:, 0].X.tolist() == np.reshape([1, 4, 7], (3, 1)).tolist()
adata[:2, 0].X = [0, 0]
assert adata[:, 0].X.tolist() == np.reshape([0, 0, 7], (3, 1)).tolist()
adata_subset = adata[:2, [0, 1]]
assert adata_subset.is_view
# now transition to actual object
adata_subset.obs["foo"] = range(2)
assert not adata_subset.is_view
assert adata_subset.obs["foo"].tolist() == list(range(2))
def test_modify_view_component(matrix_type, mapping_name):
adata = ad.AnnData(
np.zeros((10, 10)),
**{mapping_name: dict(m=matrix_type(asarray(sparse.random(10, 10))))},
)
init_hash = joblib.hash(adata)
subset = adata[:5, :][:, :5]
assert subset.is_view
m = getattr(subset, mapping_name)["m"]
m[0, 0] = 100
assert not subset.is_view
assert getattr(subset, mapping_name)["m"][0, 0] == 100
assert init_hash == joblib.hash(adata)
# TODO: These tests could probably be condensed into a fixture
# based test for obsm and varm
def test_set_obsm_key(adata):
init_hash = joblib.hash(adata)
orig_obsm_val = adata.obsm["o"].copy()
subset_obsm = adata[:50]
assert subset_obsm.is_view
subset_obsm.obsm["o"] = np.ones((50, 20))
assert not subset_obsm.is_view
assert np.all(adata.obsm["o"] == orig_obsm_val)
assert init_hash == joblib.hash(adata)
def test_set_varm_key(adata):
init_hash = joblib.hash(adata)
orig_varm_val = adata.varm["o"].copy()
subset_varm = adata[:, :50]
assert subset_varm.is_view
subset_varm.varm["o"] = np.ones((50, 20))
assert not subset_varm.is_view
assert np.all(adata.varm["o"] == orig_varm_val)
assert init_hash == joblib.hash(adata)
def test_set_obs(adata, subset_func):
init_hash = joblib.hash(adata)
subset = adata[subset_func(adata.obs_names), :]
new_obs = pd.DataFrame(
dict(a=np.ones(subset.n_obs), b=np.ones(subset.n_obs)),
index=subset.obs_names,
)
assert subset.is_view
subset.obs = new_obs
assert not subset.is_view
assert np.all(subset.obs == new_obs)
assert joblib.hash(adata) == init_hash
def test_set_var(adata, subset_func):
init_hash = joblib.hash(adata)
subset = adata[:, subset_func(adata.var_names)]
new_var = pd.DataFrame(
dict(a=np.ones(subset.n_vars), b=np.ones(subset.n_vars)),
index=subset.var_names,
)
assert subset.is_view
subset.var = new_var
assert not subset.is_view
assert np.all(subset.var == new_var)
assert joblib.hash(adata) == init_hash
def test_drop_obs_column():
adata = ad.AnnData(np.array(X_list), obs=obs_dict, dtype="int32")
subset = adata[:2]
assert subset.is_view
# returns a copy of obs
assert subset.obs.drop(columns=["oanno1"]).columns.tolist() == ["oanno2", "oanno3"]
assert subset.is_view
# would modify obs, so it should actualize subset and not modify adata
subset.obs.drop(columns=["oanno1"], inplace=True)
assert not subset.is_view
assert subset.obs.columns.tolist() == ["oanno2", "oanno3"]
assert adata.obs.columns.tolist() == ["oanno1", "oanno2", "oanno3"]
def test_set_obsm(adata):
init_hash = joblib.hash(adata)
dim0_size = np.random.randint(2, adata.shape[0] - 1)
dim1_size = np.random.randint(1, 99)
orig_obsm_val = adata.obsm["o"].copy()
subset_idx = np.random.choice(adata.obs_names, dim0_size, replace=False)
subset = adata[subset_idx, :]
assert subset.is_view
subset.obsm = dict(o=np.ones((dim0_size, dim1_size)))
assert not subset.is_view
assert np.all(orig_obsm_val == adata.obsm["o"]) # Checking for mutation
assert np.all(subset.obsm["o"] == np.ones((dim0_size, dim1_size)))
subset = adata[subset_idx, :]
subset_hash = joblib.hash(subset)
with pytest.raises(ValueError):
subset.obsm = dict(o=np.ones((dim0_size + 1, dim1_size)))
with pytest.raises(ValueError):
subset.varm = dict(o=np.ones((dim0_size - 1, dim1_size)))
assert subset_hash == joblib.hash(subset)
# Only modification have been made to a view
assert init_hash == joblib.hash(adata)
def test_set_varm(adata):
init_hash = joblib.hash(adata)
dim0_size = np.random.randint(2, adata.shape[1] - 1)
dim1_size = np.random.randint(1, 99)
orig_varm_val = adata.varm["o"].copy()
subset_idx = np.random.choice(adata.var_names, dim0_size, replace=False)
subset = adata[:, subset_idx]
assert subset.is_view
subset.varm = dict(o=np.ones((dim0_size, dim1_size)))
assert not subset.is_view
assert np.all(orig_varm_val == adata.varm["o"]) # Checking for mutation
assert np.all(subset.varm["o"] == np.ones((dim0_size, dim1_size)))
subset = adata[:, subset_idx]
subset_hash = joblib.hash(subset)
with pytest.raises(ValueError):
subset.varm = dict(o=np.ones((dim0_size + 1, dim1_size)))
with pytest.raises(ValueError):
subset.varm = dict(o=np.ones((dim0_size - 1, dim1_size)))
# subset should not be changed by failed setting
assert subset_hash == joblib.hash(subset)
assert init_hash == joblib.hash(adata)
# TODO: Determine if this is the intended behavior,
# or just the behaviour we’ve had for a while
def test_not_set_subset_X(matrix_type, subset_func):
adata = ad.AnnData(matrix_type(asarray(sparse.random(20, 20))))
init_hash = joblib.hash(adata)
orig_X_val = adata.X.copy()
while True:
subset_idx = slice_subset(adata.obs_names)
if len(adata[subset_idx, :]) > 2:
break
subset = adata[subset_idx, :]
subset = adata[:, subset_idx]
internal_idx = _normalize_index(
subset_func(np.arange(subset.X.shape[1])), subset.var_names
)
assert subset.is_view
subset.X[:, internal_idx] = 1
assert not subset.is_view
assert not np.any(asarray(adata.X != orig_X_val))
assert init_hash == joblib.hash(adata)
def test_set_scalar_subset_X(matrix_type, subset_func):
adata = ad.AnnData(matrix_type(np.zeros((10, 10))))
orig_X_val = adata.X.copy()
subset_idx = slice_subset(adata.obs_names)
adata_subset = adata[subset_idx, :]
adata_subset.X = 1
assert adata_subset.is_view
assert np.all(asarray(adata[subset_idx, :].X) == 1)
assert asarray((orig_X_val != adata.X)).sum() == mul(*adata_subset.shape)
# TODO: Use different kind of subsetting for adata and view
def test_set_subset_obsm(adata, subset_func):
init_hash = joblib.hash(adata)
orig_obsm_val = adata.obsm["o"].copy()
while True:
subset_idx = slice_subset(adata.obs_names)
if len(adata[subset_idx, :]) > 2:
break
subset = adata[subset_idx, :]
internal_idx = _normalize_index(
subset_func(np.arange(subset.obsm["o"].shape[0])), subset.obs_names
)
assert subset.is_view
subset.obsm["o"][internal_idx] = 1
assert not subset.is_view
assert np.all(adata.obsm["o"] == orig_obsm_val)
assert init_hash == joblib.hash(adata)
def test_set_subset_varm(adata, subset_func):
init_hash = joblib.hash(adata)
orig_varm_val = adata.varm["o"].copy()
while True:
subset_idx = slice_subset(adata.var_names)
if (adata[:, subset_idx]).shape[1] > 2:
break
subset = adata[:, subset_idx]
internal_idx = _normalize_index(
subset_func(np.arange(subset.varm["o"].shape[0])), subset.var_names
)
assert subset.is_view
subset.varm["o"][internal_idx] = 1
assert not subset.is_view
assert np.all(adata.varm["o"] == orig_varm_val)
assert init_hash == joblib.hash(adata)
@pytest.mark.parametrize("attr", ["obsm", "varm", "obsp", "varp", "layers"])
def test_view_failed_delitem(attr):
adata = gen_adata((10, 10))
view = adata[5:7, :][:, :5]
adata_hash = joblib.hash(adata)
view_hash = joblib.hash(view)
with pytest.raises(KeyError):
getattr(view, attr).__delitem__("not a key")
assert view.is_view
assert adata_hash == joblib.hash(adata)
assert view_hash == joblib.hash(view)
@pytest.mark.parametrize("attr", ["obsm", "varm", "obsp", "varp", "layers"])
def test_view_delitem(attr):
adata = gen_adata((10, 10))
getattr(adata, attr)["to_delete"] = np.ones((10, 10))
# Shouldn’t be a subclass, should be an ndarray
assert type(getattr(adata, attr)["to_delete"]) is np.ndarray
view = adata[5:7, :][:, :5]
adata_hash = joblib.hash(adata)
view_hash = joblib.hash(view)
getattr(view, attr).__delitem__("to_delete")
assert not view.is_view
assert "to_delete" not in getattr(view, attr)
assert "to_delete" in getattr(adata, attr)
assert adata_hash == joblib.hash(adata)
assert view_hash != joblib.hash(view)
@pytest.mark.parametrize(
"attr", ["obs", "var", "obsm", "varm", "obsp", "varp", "layers"]
)
def test_view_delattr(attr):
base = gen_adata((10, 10))
# Indexing into obs and var just to get indexes
subset = base[5:7, :5]
empty = ad.AnnData(subset.X, obs=subset.obs[[]], var=subset.var[[]])
delattr(subset, attr)
assert not subset.is_view
# Should now have same value as default
assert_equal(getattr(subset, attr), getattr(empty, attr))
@pytest.mark.parametrize(
"attr", ["obs", "var", "obsm", "varm", "obsp", "varp", "layers", "uns"]
)
def test_view_setattr_machinery(attr, subset_func, subset_func2):
# Tests that setting attributes on a view doesn't mess anything up too bad
adata = gen_adata((10, 10))
view = adata[subset_func(adata.obs_names), subset_func2(adata.var_names)]
actual = view.copy()
setattr(view, attr, getattr(actual, attr))
assert_equal(actual, view, exact=True)
def test_layers_view():
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
L = np.array([[10, 11, 12], [13, 14, 15], [16, 17, 18]])
real_adata = ad.AnnData(X)
real_adata.layers["L"] = L
view_adata = real_adata[1:, 1:]
real_hash = joblib.hash(real_adata)
view_hash = joblib.hash(view_adata)
assert view_adata.is_view
with pytest.raises(ValueError):
view_adata.layers["L2"] = L + 2
assert view_adata.is_view # Failing to set layer item makes adata not view
assert real_hash == joblib.hash(real_adata)
assert view_hash == joblib.hash(view_adata)
view_adata.layers["L2"] = L[1:, 1:] + 2
assert not view_adata.is_view
assert real_hash == joblib.hash(real_adata)
assert view_hash != joblib.hash(view_adata)
# TODO: This can be flaky. Make that stop
def test_view_of_view(matrix_type, subset_func, subset_func2):
adata = gen_adata((30, 15), X_type=matrix_type)
adata.raw = adata
if subset_func is single_subset:
pytest.xfail("Other subset generating functions have trouble with this")
var_s1 = subset_func(adata.var_names, min_size=4)
var_view1 = adata[:, var_s1]
var_s2 = subset_func2(var_view1.var_names)
var_view2 = var_view1[:, var_s2]
assert var_view2._adata_ref is adata
obs_s1 = subset_func(adata.obs_names, min_size=4)
obs_view1 = adata[obs_s1, :]
obs_s2 = subset_func2(obs_view1.obs_names)
assert adata[obs_s1, :][:, var_s1][obs_s2, :]._adata_ref is adata
view_of_actual_copy = adata[:, var_s1].copy()[obs_s1, :].copy()[:, var_s2].copy()
view_of_view_copy = adata[:, var_s1][obs_s1, :][:, var_s2].copy()
assert_equal(view_of_actual_copy, view_of_view_copy, exact=True)
def test_view_of_view_modification():
adata = ad.AnnData(np.zeros((10, 10)))
adata[0, :][:, 5:].X = np.ones(5)
assert np.all(adata.X[0, 5:] == np.ones(5))
adata[[1, 2], :][:, [1, 2]].X = np.ones((2, 2))
assert np.all(adata.X[1:3, 1:3] == np.ones((2, 2)))
adata.X = sparse.csr_matrix(adata.X)
adata[0, :][:, 5:].X = np.ones(5) * 2
assert np.all(asarray(adata.X)[0, 5:] == np.ones(5) * 2)
adata[[1, 2], :][:, [1, 2]].X = np.ones((2, 2)) * 2
assert np.all(asarray(adata.X)[1:3, 1:3] == np.ones((2, 2)) * 2)
def test_double_index(subset_func, subset_func2):
adata = gen_adata((10, 10))
obs_subset = subset_func(adata.obs_names)
var_subset = subset_func2(adata.var_names)
v1 = adata[obs_subset, var_subset]
v2 = adata[obs_subset, :][:, var_subset]
assert np.all(asarray(v1.X) == asarray(v2.X))
assert np.all(v1.obs == v2.obs)
assert np.all(v1.var == v2.var)
def test_view_retains_ndarray_subclass():
adata = ad.AnnData(np.zeros((10, 10)))
adata.obsm["foo"] = np.zeros((10, 5)).view(NDArraySubclass)
view = adata[:5, :]
assert isinstance(view.obsm["foo"], NDArraySubclass)
assert view.obsm["foo"].shape == (5, 5)
|