File: test_views.py

package info (click to toggle)
python-anndata 0.7.5%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 628 kB
  • sloc: python: 7,779; makefile: 8
file content (477 lines) | stat: -rw-r--r-- 14,819 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
from operator import mul

import joblib
import numpy as np
from scipy import sparse
import pandas as pd
import pytest

import anndata as ad
from anndata._core.index import _normalize_index
from anndata.utils import asarray

from anndata.tests.helpers import (
    gen_adata,
    subset_func,
    slice_subset,
    single_subset,
    assert_equal,
)

# ------------------------------------------------------------------------------
# Some test data
# ------------------------------------------------------------------------------

# data matrix of shape n_obs x n_vars
X_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
# annotation of observations / rows
obs_dict = dict(
    row_names=["name1", "name2", "name3"],  # row annotation
    oanno1=["cat1", "cat2", "cat2"],  # categorical annotation
    oanno2=["o1", "o2", "o3"],  # string annotation
    oanno3=[2.1, 2.2, 2.3],  # float annotation
)
# annotation of variables / columns
var_dict = dict(vanno1=[3.1, 3.2, 3.3])
# unstructured annotation
uns_dict = dict(oanno1_colors=["#000000", "#FFFFFF"], uns2=["some annotation"])


subset_func2 = subset_func


class NDArraySubclass(np.ndarray):
    def view(self, dtype=None, typ=None):
        return self


@pytest.fixture
def adata():
    adata = ad.AnnData(np.zeros((100, 100)))
    adata.obsm["o"] = np.zeros((100, 50))
    adata.varm["o"] = np.zeros((100, 50))
    return adata


@pytest.fixture(params=[asarray, sparse.csr_matrix, sparse.csc_matrix])
def adata_parameterized(request):
    return gen_adata(shape=(200, 300), X_type=request.param)


@pytest.fixture(
    params=[np.array, sparse.csr_matrix, sparse.csc_matrix],
    ids=["np_array", "scipy_csr", "scipy_csc"],
)
def matrix_type(request):
    return request.param


@pytest.fixture(params=["layers", "obsm", "varm"])
def mapping_name(request):
    return request.param


# ------------------------------------------------------------------------------
# The test functions
# ------------------------------------------------------------------------------


def test_views():
    X = np.array(X_list)
    adata = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict, dtype="int32")

    assert adata[:, 0].is_view
    assert adata[:, 0].X.tolist() == np.reshape([1, 4, 7], (3, 1)).tolist()

    adata[:2, 0].X = [0, 0]

    assert adata[:, 0].X.tolist() == np.reshape([0, 0, 7], (3, 1)).tolist()

    adata_subset = adata[:2, [0, 1]]

    assert adata_subset.is_view
    # now transition to actual object
    adata_subset.obs["foo"] = range(2)
    assert not adata_subset.is_view

    assert adata_subset.obs["foo"].tolist() == list(range(2))


def test_modify_view_component(matrix_type, mapping_name):
    adata = ad.AnnData(
        np.zeros((10, 10)),
        **{mapping_name: dict(m=matrix_type(asarray(sparse.random(10, 10))))},
    )
    init_hash = joblib.hash(adata)

    subset = adata[:5, :][:, :5]
    assert subset.is_view
    m = getattr(subset, mapping_name)["m"]
    m[0, 0] = 100
    assert not subset.is_view
    assert getattr(subset, mapping_name)["m"][0, 0] == 100

    assert init_hash == joblib.hash(adata)


# TODO: These tests could probably be condensed into a fixture
#       based test for obsm and varm
def test_set_obsm_key(adata):
    init_hash = joblib.hash(adata)

    orig_obsm_val = adata.obsm["o"].copy()
    subset_obsm = adata[:50]
    assert subset_obsm.is_view
    subset_obsm.obsm["o"] = np.ones((50, 20))
    assert not subset_obsm.is_view
    assert np.all(adata.obsm["o"] == orig_obsm_val)

    assert init_hash == joblib.hash(adata)


def test_set_varm_key(adata):
    init_hash = joblib.hash(adata)

    orig_varm_val = adata.varm["o"].copy()
    subset_varm = adata[:, :50]
    assert subset_varm.is_view
    subset_varm.varm["o"] = np.ones((50, 20))
    assert not subset_varm.is_view
    assert np.all(adata.varm["o"] == orig_varm_val)

    assert init_hash == joblib.hash(adata)


def test_set_obs(adata, subset_func):
    init_hash = joblib.hash(adata)

    subset = adata[subset_func(adata.obs_names), :]

    new_obs = pd.DataFrame(
        dict(a=np.ones(subset.n_obs), b=np.ones(subset.n_obs)),
        index=subset.obs_names,
    )

    assert subset.is_view
    subset.obs = new_obs
    assert not subset.is_view
    assert np.all(subset.obs == new_obs)

    assert joblib.hash(adata) == init_hash


def test_set_var(adata, subset_func):
    init_hash = joblib.hash(adata)

    subset = adata[:, subset_func(adata.var_names)]

    new_var = pd.DataFrame(
        dict(a=np.ones(subset.n_vars), b=np.ones(subset.n_vars)),
        index=subset.var_names,
    )

    assert subset.is_view
    subset.var = new_var
    assert not subset.is_view
    assert np.all(subset.var == new_var)

    assert joblib.hash(adata) == init_hash


def test_drop_obs_column():
    adata = ad.AnnData(np.array(X_list), obs=obs_dict, dtype="int32")

    subset = adata[:2]
    assert subset.is_view
    # returns a copy of obs
    assert subset.obs.drop(columns=["oanno1"]).columns.tolist() == ["oanno2", "oanno3"]
    assert subset.is_view
    # would modify obs, so it should actualize subset and not modify adata
    subset.obs.drop(columns=["oanno1"], inplace=True)
    assert not subset.is_view
    assert subset.obs.columns.tolist() == ["oanno2", "oanno3"]

    assert adata.obs.columns.tolist() == ["oanno1", "oanno2", "oanno3"]


def test_set_obsm(adata):
    init_hash = joblib.hash(adata)

    dim0_size = np.random.randint(2, adata.shape[0] - 1)
    dim1_size = np.random.randint(1, 99)
    orig_obsm_val = adata.obsm["o"].copy()
    subset_idx = np.random.choice(adata.obs_names, dim0_size, replace=False)

    subset = adata[subset_idx, :]
    assert subset.is_view
    subset.obsm = dict(o=np.ones((dim0_size, dim1_size)))
    assert not subset.is_view
    assert np.all(orig_obsm_val == adata.obsm["o"])  # Checking for mutation
    assert np.all(subset.obsm["o"] == np.ones((dim0_size, dim1_size)))

    subset = adata[subset_idx, :]
    subset_hash = joblib.hash(subset)
    with pytest.raises(ValueError):
        subset.obsm = dict(o=np.ones((dim0_size + 1, dim1_size)))
    with pytest.raises(ValueError):
        subset.varm = dict(o=np.ones((dim0_size - 1, dim1_size)))
    assert subset_hash == joblib.hash(subset)

    # Only modification have been made to a view
    assert init_hash == joblib.hash(adata)


def test_set_varm(adata):
    init_hash = joblib.hash(adata)

    dim0_size = np.random.randint(2, adata.shape[1] - 1)
    dim1_size = np.random.randint(1, 99)
    orig_varm_val = adata.varm["o"].copy()
    subset_idx = np.random.choice(adata.var_names, dim0_size, replace=False)

    subset = adata[:, subset_idx]
    assert subset.is_view
    subset.varm = dict(o=np.ones((dim0_size, dim1_size)))
    assert not subset.is_view
    assert np.all(orig_varm_val == adata.varm["o"])  # Checking for mutation
    assert np.all(subset.varm["o"] == np.ones((dim0_size, dim1_size)))

    subset = adata[:, subset_idx]
    subset_hash = joblib.hash(subset)
    with pytest.raises(ValueError):
        subset.varm = dict(o=np.ones((dim0_size + 1, dim1_size)))
    with pytest.raises(ValueError):
        subset.varm = dict(o=np.ones((dim0_size - 1, dim1_size)))
    # subset should not be changed by failed setting
    assert subset_hash == joblib.hash(subset)
    assert init_hash == joblib.hash(adata)


# TODO: Determine if this is the intended behavior,
#       or just the behaviour we’ve had for a while
def test_not_set_subset_X(matrix_type, subset_func):
    adata = ad.AnnData(matrix_type(asarray(sparse.random(20, 20))))
    init_hash = joblib.hash(adata)
    orig_X_val = adata.X.copy()
    while True:
        subset_idx = slice_subset(adata.obs_names)
        if len(adata[subset_idx, :]) > 2:
            break
    subset = adata[subset_idx, :]

    subset = adata[:, subset_idx]

    internal_idx = _normalize_index(
        subset_func(np.arange(subset.X.shape[1])), subset.var_names
    )
    assert subset.is_view
    subset.X[:, internal_idx] = 1
    assert not subset.is_view
    assert not np.any(asarray(adata.X != orig_X_val))

    assert init_hash == joblib.hash(adata)


def test_set_scalar_subset_X(matrix_type, subset_func):
    adata = ad.AnnData(matrix_type(np.zeros((10, 10))))
    orig_X_val = adata.X.copy()
    subset_idx = slice_subset(adata.obs_names)

    adata_subset = adata[subset_idx, :]

    adata_subset.X = 1

    assert adata_subset.is_view
    assert np.all(asarray(adata[subset_idx, :].X) == 1)

    assert asarray((orig_X_val != adata.X)).sum() == mul(*adata_subset.shape)


# TODO: Use different kind of subsetting for adata and view
def test_set_subset_obsm(adata, subset_func):
    init_hash = joblib.hash(adata)
    orig_obsm_val = adata.obsm["o"].copy()

    while True:
        subset_idx = slice_subset(adata.obs_names)
        if len(adata[subset_idx, :]) > 2:
            break
    subset = adata[subset_idx, :]

    internal_idx = _normalize_index(
        subset_func(np.arange(subset.obsm["o"].shape[0])), subset.obs_names
    )

    assert subset.is_view
    subset.obsm["o"][internal_idx] = 1
    assert not subset.is_view
    assert np.all(adata.obsm["o"] == orig_obsm_val)

    assert init_hash == joblib.hash(adata)


def test_set_subset_varm(adata, subset_func):
    init_hash = joblib.hash(adata)
    orig_varm_val = adata.varm["o"].copy()

    while True:
        subset_idx = slice_subset(adata.var_names)
        if (adata[:, subset_idx]).shape[1] > 2:
            break
    subset = adata[:, subset_idx]

    internal_idx = _normalize_index(
        subset_func(np.arange(subset.varm["o"].shape[0])), subset.var_names
    )

    assert subset.is_view
    subset.varm["o"][internal_idx] = 1
    assert not subset.is_view
    assert np.all(adata.varm["o"] == orig_varm_val)

    assert init_hash == joblib.hash(adata)


@pytest.mark.parametrize("attr", ["obsm", "varm", "obsp", "varp", "layers"])
def test_view_failed_delitem(attr):
    adata = gen_adata((10, 10))
    view = adata[5:7, :][:, :5]
    adata_hash = joblib.hash(adata)
    view_hash = joblib.hash(view)

    with pytest.raises(KeyError):
        getattr(view, attr).__delitem__("not a key")

    assert view.is_view
    assert adata_hash == joblib.hash(adata)
    assert view_hash == joblib.hash(view)


@pytest.mark.parametrize("attr", ["obsm", "varm", "obsp", "varp", "layers"])
def test_view_delitem(attr):
    adata = gen_adata((10, 10))
    getattr(adata, attr)["to_delete"] = np.ones((10, 10))
    # Shouldn’t be a subclass, should be an ndarray
    assert type(getattr(adata, attr)["to_delete"]) is np.ndarray
    view = adata[5:7, :][:, :5]
    adata_hash = joblib.hash(adata)
    view_hash = joblib.hash(view)

    getattr(view, attr).__delitem__("to_delete")

    assert not view.is_view
    assert "to_delete" not in getattr(view, attr)
    assert "to_delete" in getattr(adata, attr)
    assert adata_hash == joblib.hash(adata)
    assert view_hash != joblib.hash(view)


@pytest.mark.parametrize(
    "attr", ["obs", "var", "obsm", "varm", "obsp", "varp", "layers"]
)
def test_view_delattr(attr):
    base = gen_adata((10, 10))
    # Indexing into obs and var just to get indexes
    subset = base[5:7, :5]
    empty = ad.AnnData(subset.X, obs=subset.obs[[]], var=subset.var[[]])
    delattr(subset, attr)
    assert not subset.is_view
    # Should now have same value as default
    assert_equal(getattr(subset, attr), getattr(empty, attr))


@pytest.mark.parametrize(
    "attr", ["obs", "var", "obsm", "varm", "obsp", "varp", "layers", "uns"]
)
def test_view_setattr_machinery(attr, subset_func, subset_func2):
    # Tests that setting attributes on a view doesn't mess anything up too bad
    adata = gen_adata((10, 10))
    view = adata[subset_func(adata.obs_names), subset_func2(adata.var_names)]

    actual = view.copy()
    setattr(view, attr, getattr(actual, attr))
    assert_equal(actual, view, exact=True)


def test_layers_view():
    X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    L = np.array([[10, 11, 12], [13, 14, 15], [16, 17, 18]])
    real_adata = ad.AnnData(X)
    real_adata.layers["L"] = L
    view_adata = real_adata[1:, 1:]
    real_hash = joblib.hash(real_adata)
    view_hash = joblib.hash(view_adata)

    assert view_adata.is_view

    with pytest.raises(ValueError):
        view_adata.layers["L2"] = L + 2

    assert view_adata.is_view  # Failing to set layer item makes adata not view
    assert real_hash == joblib.hash(real_adata)
    assert view_hash == joblib.hash(view_adata)

    view_adata.layers["L2"] = L[1:, 1:] + 2

    assert not view_adata.is_view
    assert real_hash == joblib.hash(real_adata)
    assert view_hash != joblib.hash(view_adata)


# TODO: This can be flaky. Make that stop
def test_view_of_view(matrix_type, subset_func, subset_func2):
    adata = gen_adata((30, 15), X_type=matrix_type)
    adata.raw = adata
    if subset_func is single_subset:
        pytest.xfail("Other subset generating functions have trouble with this")
    var_s1 = subset_func(adata.var_names, min_size=4)
    var_view1 = adata[:, var_s1]
    var_s2 = subset_func2(var_view1.var_names)
    var_view2 = var_view1[:, var_s2]
    assert var_view2._adata_ref is adata
    obs_s1 = subset_func(adata.obs_names, min_size=4)
    obs_view1 = adata[obs_s1, :]
    obs_s2 = subset_func2(obs_view1.obs_names)
    assert adata[obs_s1, :][:, var_s1][obs_s2, :]._adata_ref is adata

    view_of_actual_copy = adata[:, var_s1].copy()[obs_s1, :].copy()[:, var_s2].copy()

    view_of_view_copy = adata[:, var_s1][obs_s1, :][:, var_s2].copy()

    assert_equal(view_of_actual_copy, view_of_view_copy, exact=True)


def test_view_of_view_modification():
    adata = ad.AnnData(np.zeros((10, 10)))
    adata[0, :][:, 5:].X = np.ones(5)
    assert np.all(adata.X[0, 5:] == np.ones(5))
    adata[[1, 2], :][:, [1, 2]].X = np.ones((2, 2))
    assert np.all(adata.X[1:3, 1:3] == np.ones((2, 2)))

    adata.X = sparse.csr_matrix(adata.X)
    adata[0, :][:, 5:].X = np.ones(5) * 2
    assert np.all(asarray(adata.X)[0, 5:] == np.ones(5) * 2)
    adata[[1, 2], :][:, [1, 2]].X = np.ones((2, 2)) * 2
    assert np.all(asarray(adata.X)[1:3, 1:3] == np.ones((2, 2)) * 2)


def test_double_index(subset_func, subset_func2):
    adata = gen_adata((10, 10))
    obs_subset = subset_func(adata.obs_names)
    var_subset = subset_func2(adata.var_names)
    v1 = adata[obs_subset, var_subset]
    v2 = adata[obs_subset, :][:, var_subset]

    assert np.all(asarray(v1.X) == asarray(v2.X))
    assert np.all(v1.obs == v2.obs)
    assert np.all(v1.var == v2.var)


def test_view_retains_ndarray_subclass():
    adata = ad.AnnData(np.zeros((10, 10)))
    adata.obsm["foo"] = np.zeros((10, 5)).view(NDArraySubclass)

    view = adata[:5, :]

    assert isinstance(view.obsm["foo"], NDArraySubclass)
    assert view.obsm["foo"].shape == (5, 5)