File: discriminator_perf.py

package info (click to toggle)
python-apischema 0.18.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,608 kB
  • sloc: python: 15,266; sh: 7; makefile: 7
file content (31 lines) | stat: -rw-r--r-- 865 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from dataclasses import dataclass
from timeit import timeit
from typing import Annotated

from apischema import deserialization_method, discriminator


@dataclass
class Cat:
    love_dog: bool = False


@dataclass
class Dog:
    love_cat: bool = False


deserialize_union = deserialization_method(Cat | Dog)
deserialize_discriminated = deserialization_method(
    Annotated[Cat | Dog, discriminator("type")]
)
##### Without discrimininator
print(timeit('deserialize_union({"love_dog": False})', globals=globals()))
# Cat: 0.760085788
print(timeit('deserialize_union({"love_cat": False})', globals=globals()))
# Dog: 3.078876515 ≈ x4
##### With discriminator
print(timeit('deserialize_discriminated({"type": "Cat"})', globals=globals()))
# Cat: 1.244204702
print(timeit('deserialize_discriminated({"type": "Dog"})', globals=globals()))
# Dog: 1.234058598 ≈ same