File: speedtest.py

package info (click to toggle)
python-apsw 3.46.0.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,684 kB
  • sloc: python: 13,125; ansic: 12,334; javascript: 911; makefile: 10; sh: 7
file content (587 lines) | stat: -rwxr-xr-x 21,859 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
#!/usr/bin/env python3
#
# See the accompanying LICENSE file.
#
# Do speed tests.  The tests try to correspond to
# https://www.sqlite.org/src/file?name=tool/speedtest.tcl&ci=trunk
# Command line options etc were added later hence the
# somewhat weird structuring.

import sys
import os
import random
import time
import gc
import argparse
import statistics

timerfn = time.process_time


def doit():
    random.seed(0)
    options.tests = [t.strip() for t in options.tests.split(",")]

    print("         Python", sys.executable, sys.version_info)
    print("          Scale", options.scale)
    print("       Database", options.database)
    print("            VFS", options.vfs if options.vfs else "(default)")
    print("          Tests", ", ".join(options.tests))
    print("     Iterations", options.iterations)
    print("Statement Cache", options.scsize)

    print("\n")
    if options.apsw:
        import apsw

        print("   Testing with APSW file ", apsw.__file__)
        print("             APSW version ", apsw.apsw_version())
        print("       SQLite lib version ", apsw.sqlite_lib_version())
        print("   SQLite headers version ", apsw.SQLITE_VERSION_NUMBER, end="\n\n")

        def apsw_setup(dbfile):
            con = apsw.Connection(dbfile, statementcachesize=options.scsize, vfs=options.vfs)
            con.create_scalar_function("number_name", number_name, 1)
            return con

    if options.sqlite3:
        import sqlite3

        print("Testing with sqlite3 file ", sqlite3.__file__)
        print("           SQLite version ", sqlite3.sqlite_version, end="\n\n")

        def sqlite3_setup(dbfile):
            con = sqlite3.connect(dbfile, isolation_level=None, cached_statements=options.scsize)
            con.create_function("number_name", 1, number_name)
            return con

    ones = ("zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve",
            "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen")
    tens = ("", "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety")

    others = ("thousand", "hundred", "zero")

    def _number_name(n):
        if n >= 1000:
            txt = "%s %s" % (_number_name(int(n / 1000)), others[0])
            n = n % 1000
        else:
            txt = ""

        if n >= 100:
            txt = txt + " " + ones[int(n / 100)] + " " + others[1]
            n = n % 100

        if n >= 20:
            txt = txt + " " + tens[int(n / 10)]
            n = n % 10

        if n > 0:
            txt = txt + " " + ones[n]

        txt = txt.strip()

        if txt == "":
            txt = others[2]

        return txt

    def unicodify(text):
        if options.unicode and len(text):
            newt = []
            c = options.unicode / 100.0
            for t in text:
                if random.random() > c:
                    newt.append(t)
                    continue
                while True:
                    t = random.randint(0xa1, sys.maxunicode)
                    # we don't want the surrogate range or apostrophe
                    if t < 0xd800 or t > 0xdfff: break
                newt.append(chr(t))
            text = "".join(newt)
        return text

    if options.unicode:
        ones = tuple([unicodify(s) for s in ones])
        tens = tuple([unicodify(s) for s in tens])
        others = tuple([unicodify(s) for s in others])

    def number_name(n):
        text = _number_name(n)
        if options.size:
            text = text * random.randint(1, options.size)
        return text

    def getlines(scale, bindings=False):
        random.seed(0)

        # RogerB added two pragmas so that only memory is used.  This means that the
        # vagaries of disk access times don't alter the results

        # numbers in the comments reflect the original SQLite speedtest not
        # what we actually do

        # database schema
        for i in f"""PRAGMA page_size=4096;
      PRAGMA cache_size=-{ int(options.sqlite_cache_mb * 1024) };
      PRAGMA locking_mode=EXCLUSIVE;
      PRAGMA temp_store = MEMORY;
      CREATE TABLE t1(a INTEGER, b INTEGER, c TEXT);
      CREATE TABLE t2(a INTEGER, b INTEGER, c TEXT);
      CREATE INDEX i2a ON t2(a);
      CREATE INDEX i2b ON t2(b);
      SELECT name FROM sqlite_schema ORDER BY 1""".split(";"):
            yield (i, )

        # 50,000 inserts on an unindexed table
        yield ("BEGIN", )
        for i in range(1, scale * 10000 + 1):
            r = random.randint(0, 500000)
            if bindings:
                yield ("INSERT INTO t1 VALUES(?, ?, number_name(?))", (i, r, r))
            else:
                yield ("INSERT INTO t1 VALUES(%d, %d, '%s')" % (i, r, number_name(r)), )
        yield ("COMMIT", )

        # 50,000 inserts on an indexed table
        t1c_list = []
        yield ("BEGIN", )
        for i in range(1, scale * 10000 + 1):
            r = random.randint(0, 500000)
            x = number_name(r)
            t1c_list.append(x)
            if bindings:
                yield ("INSERT INTO t2 VALUES(?, ?, number_name(?))", (i, r, r))
            else:
                yield ("INSERT INTO t2 VALUES(%d, %d, '%s')" % (i, r, x), )
        yield ("COMMIT", )

        # 50 SELECTs on an integer comparison.  There is no index so
        # a full table scan is required.
        for i in range(scale):
            yield ("SELECT count(*), avg(b) FROM t1 WHERE b>=%d AND b<%d" % (i * 100, (i + 10) * 100), )

        # 50 SELECTs on an LIKE comparison.  There is no index so a full
        # table scan is required.
        for i in range(scale):
            yield ("SELECT count(*), avg(b) FROM t1 WHERE c LIKE '%%%s%%'" % (number_name(i), ), )

        # Create indices
        yield ("BEGIN", )
        for i in """CREATE INDEX i1a ON t1(a);
                    CREATE INDEX i1b ON t1(b);
                    CREATE INDEX i1c ON t1(c);""".split(";"):
            yield (i, )
        yield ("COMMIT", )

        # 5000 SELECTs on an integer comparison where the integer is
        # indexed.
        for i in range(scale * 100):
            yield ("SELECT count(*), avg(b) FROM t1 WHERE b>=%d AND b<%d" % (i * 100, (i + 10) * 100), )

        # 100000 random SELECTs against rowid.
        for i in range(1, scale * 2000 + 1):
            yield ("SELECT c FROM t1 WHERE rowid=%d" % (1 + random.randint(0, 50000), ), )

        # 100000 random SELECTs against a unique indexed column.
        for i in range(1, scale * 2000 + 1):
            yield ("SELECT c FROM t1 WHERE a=%d" % (1 + random.randint(0, 50000), ), )

        # 50000 random SELECTs against an indexed column text column
        for i in range(scale * 1000):
            if bindings:
                yield (
                    "SELECT c FROM t1 WHERE c=?",
                    (random.choice(t1c_list), ),
                )
            else:
                yield ("SELECT c FROM t1 WHERE c='%s'" % (random.choice(t1c_list), ), )

        # Vacuum
        if options.database != ":memory:":
            # opens a disk file
            yield ("VACUUM", )

        # 5000 updates of ranges where the field being compared is indexed.
        yield ("BEGIN", )
        for i in range(scale * 100):
            yield ("UPDATE t1 SET b=b*2 WHERE a>=%d AND a<%d" % (i * 2, (i + 1) * 2), )
        yield ("COMMIT", )

        # 50000 single-row updates.  An index is used to find the row quickly.
        yield ("BEGIN", )
        for i in range(scale * 1000):
            if bindings:
                yield ("UPDATE t1 SET b=? WHERE a=%d" % (i, ), (random.randint(0, 500000), ))
            else:
                yield ("UPDATE t1 SET b=%d WHERE a=%d" % (random.randint(0, 500000), i), )
        yield ("COMMIT", )

        # 1 big text update that touches every row in the table.
        yield ("UPDATE t1 SET c=a", )

        # Many individual text updates.  Each row in the table is
        # touched through an index.
        yield ("BEGIN", )
        for i in range(1, scale * 1000 + 1):
            if bindings:
                yield ("UPDATE t1 SET c=? WHERE a=%d" % (i, ), (number_name(random.randint(0, 500000)), ))
            else:
                yield ("UPDATE t1 SET c='%s' WHERE a=%d" % (number_name(random.randint(0, 500000)), i), )
        yield ("COMMIT", )

        # Delete all content in a table.
        yield ("DELETE FROM t1", )

        # Copy one table into another
        yield ("INSERT INTO t1 SELECT * FROM t2", )

        # Delete all content in a table, one row at a time.
        yield ("DELETE FROM t1 WHERE 1", )

        # Refill the table yet again
        yield ("INSERT INTO t1 SELECT * FROM t2", )

        # Drop the table and recreate it without its indices.
        yield ("BEGIN", )
        yield ("DROP TABLE t1", )
        yield ("CREATE TABLE t1(a INTEGER, b INTEGER, c TEXT)", )
        yield ("COMMIT", )

        # Refill the table yet again.  This copy should be faster because
        # there are no indices to deal with.
        yield ("INSERT INTO t1 SELECT * FROM t2", )

        # The three following used "ORDER BY random()" but we can't do that
        # as it causes each run to have different values, and hence different
        # amounts of sorting that have to go on.  The "random()" has been
        # replaced by "c", the column that has the stringified number

        # Select 20000 rows from the table at random.
        yield ("SELECT rowid FROM t1 ORDER BY c LIMIT %d" % (scale * 400, ), )

        # Delete 20000 random rows from the table.
        yield ("""  DELETE FROM t1 WHERE rowid IN
                         (SELECT rowid FROM t1 ORDER BY c LIMIT %d)""" % (scale * 400, ), )

        yield ("SELECT count(*) FROM t1", )

        # Delete 20000 more rows at random from the table.
        yield ("""DELETE FROM t1 WHERE rowid IN
                     (SELECT rowid FROM t1 ORDER BY c LIMIT %d)""" % (scale * 400, ), )

        yield ("SELECT count(*) FROM t1", )

    # Do a correctness test first
    if options.correctness:
        print("Correctness test\n")
        if 'bigstmt' in options.tests:
            text = ";\n".join([x[0] for x in getlines(scale=1)]) + ";"
        if 'statements' in options.tests:
            withbindings = [line for line in getlines(scale=1, bindings=True)]
        if 'statements_nobindings' in options.tests:
            withoutbindings = [line for line in getlines(scale=1, bindings=False)]

        res = {}
        for driver in ('apsw', 'sqlite3'):
            if not getattr(options, driver):
                continue

            for test in options.tests:
                name = driver + "_" + test

                print(name + '\t')
                sys.stdout.flush()

                if name == 'sqlite3_bigstmt':
                    print('limited functionality (ignoring)\n')
                    continue

                con = locals().get(driver + "_setup")(":memory:")  # we always correctness test on memory

                if test == 'bigstmt':
                    cursor = con.cursor()
                    if driver == 'apsw':
                        func = cursor.execute
                    else:
                        func = cursor.executescript

                    res[name] = [row for row in func(text)]
                    print(str(len(res[name])) + "\n")
                    continue

                cursor = con.cursor()
                if test == 'statements':
                    sql = withbindings
                elif test == 'statements_nobindings':
                    sql = withoutbindings

                l = []
                for s in sql:
                    for row in cursor.execute(*s):
                        l.append(row)

                res[name] = l
                print(str(len(res[name])) + "\n")

        # All elements of res should be identical
        elements = sorted(res.keys())
        for i in range(0, len(elements) - 1):
            print("%s == %s %s\n" % (elements[i], elements[i + 1], res[elements[i]] == res[elements[i + 1]]))

        del res
    text = None
    withbindings = None
    withoutbindings = None

    if options.dump_filename or "bigstmt" in options.tests:
        text = ";\n".join([x[0] for x in getlines(scale=options.scale)]) + ";"  # sqlite3 requires final semicolon
        if options.dump_filename:
            open(options.dump_filename, "wt", encoding="utf8").write(text)
            sys.exit(0)

    if "statements" in options.tests:
        withbindings = list(getlines(scale=options.scale, bindings=True))

    if "statements_nobindings" in options.tests:
        withoutbindings = list(getlines(scale=options.scale, bindings=False))

    # Each test returns the amount of time taken.  Note that we include
    # the close time as well.  Otherwise the numbers become a function of
    # cache and other collection sizes as freeing members gets deferred to
    # close time.

    def apsw_bigstmt(con):
        "APSW big statement"
        for row in con.execute(text):
            pass

    def sqlite3_bigstmt(con):
        "sqlite3 big statement"
        for row in con.executescript(text):
            pass

    def apsw_statements(con, bindings=withbindings):
        "APSW individual statements with bindings"
        cursor = con.cursor()
        for b in bindings:
            for row in cursor.execute(*b):
                pass

    def sqlite3_statements(con, bindings=withbindings):
        "sqlite3 individual statements with bindings"
        cursor = con.cursor()
        for b in bindings:
            for row in cursor.execute(*b):
                pass

    def apsw_statements_nobindings(con):
        "APSW individual statements without bindings"
        return apsw_statements(con, withoutbindings)

    def sqlite3_statements_nobindings(con):
        "sqlite3 individual statements without bindings"
        return sqlite3_statements(con, withoutbindings)

    # Do the work
    print("\nRunning tests ", end="", flush=True)
    if options.showruns:
        print("- elapsed, CPU (in seconds, lower is better)\n")

    timings = {}

    for i in range(options.iterations):
        if options.showruns:
            print("%d/%d" % (i + 1, options.iterations))
        else:
            print("", i + 1, end="", flush=True)
        for test in options.tests:
            # funky stuff is to alternate order each round
            for driver in (("apsw", "sqlite3"), ("sqlite3", "apsw"))[i % 2]:
                if getattr(options, driver):
                    name = driver + "_" + test
                    func = locals().get(name, None)
                    if not func:
                        sys.exit("No such test " + name + "\n")
                    if driver not in timings:
                        timings[driver] = {}
                    if test not in timings[driver]:
                        timings[driver][test] = []

                    if os.path.exists(options.database):
                        os.remove(options.database)
                    if options.showruns:
                        print("\t" + func.__name__ + (" " * (40 - len(func.__name__))), end="")
                    con = locals().get(driver + "_setup")(options.database)
                    gc.collect(2)
                    b4cpu = timerfn()
                    b4 = time.time()
                    func(con)
                    con.close()  # see note above as to why we include this in the timing
                    gc.collect(2)
                    after = time.time()
                    aftercpu = timerfn()
                    if options.showruns:
                        print("%0.3f %0.3f" % (after - b4, aftercpu - b4cpu))
                    timings[driver][test].append((after - b4, aftercpu - b4cpu))

    vals = []
    for driver in timings.keys():
        for test in timings[driver].keys():
            elapsed = [t[0] for t in timings[driver][test]]
            cpu = [t[1] for t in timings[driver][test]]
            vals.append((test, driver, f"{ driver }_{ test }", statistics.median(elapsed), statistics.stdev(elapsed),
                         statistics.median(cpu), statistics.stdev(cpu)))

    print("\nMedian (standard deviation) for elapsed, CPU time - in seconds, lower is better\n")
    vals.sort()
    w = max(len(v[2]) for v in vals)
    for v in vals:
        print(v[2], " " * (w - len(v[2])), "\t%0.3f (%0.3f)\t%0.3f (%0.3f)" % v[3:])
    print()


parser = argparse.ArgumentParser(prog="apsw.speedtest", description="Tests performance of apsw and sqlite3 packages")
parser.add_argument("--apsw",
                    dest="apsw",
                    action="store_true",
                    default=False,
                    help="Include apsw in testing [%(default)s]")
parser.add_argument("--sqlite3",
                    action="store_true",
                    default=False,
                    help="Include sqlite3 module in testing [%(default)s]")
parser.add_argument("--correctness",
                    dest="correctness",
                    action="store_true",
                    default=False,
                    help="Do a correctness test")
parser.add_argument(
    "--scale",
    dest="scale",
    type=int,
    default=10,
    help=
    "How many statements to execute.  Each 5 units takes about 1 second per test on memory only databases. [%(default)s]"
)
parser.add_argument("--database", dest="database", default=":memory:", help="The database file to use [%(default)s]")
parser.add_argument("--tests",
                    dest="tests",
                    default="bigstmt,statements,statements_nobindings",
                    help="What tests to run [%(default)s]")
parser.add_argument("--iterations",
                    dest="iterations",
                    default=4,
                    type=int,
                    metavar="N",
                    help="How many times to run the tests [%(default)s]")
parser.add_argument("--tests-detail",
                    dest="tests_detail",
                    default=False,
                    action="store_true",
                    help="Print details of what the tests do.  (Does not run the tests)")
parser.add_argument("--dump-sql",
                    dest="dump_filename",
                    metavar="FILENAME",
                    help="Name of file to dump SQL to.  This is useful for feeding into the SQLite command line shell.")
parser.add_argument("--sc-size",
                    dest="scsize",
                    type=int,
                    default=128,
                    metavar="N",
                    help="Size of the statement cache. [%(default)s]")
parser.add_argument("--unicode",
                    dest="unicode",
                    type=int,
                    default=0,
                    help="Percentage of text that is non-ascii unicode characters [%(default)s]")
parser.add_argument(
    "--data-size",
    dest="size",
    type=int,
    default=0,
    metavar="SIZE",
    help="Duplicate the ~50 byte text column value up to this many times (amount randomly selected per row)")
parser.add_argument("--hide-runs",
                    dest="showruns",
                    action="store_false",
                    default=True,
                    help="Don't show the individual iteration timings, only final summary")
parser.add_argument(
    "--vfs",
    help=
    "Use the named vfs.  'passthru' creates a dummy APSW vfs.  You need to provide a real database filename otherwise the memory vfs is used."
)
parser.add_argument(
    "--sqlite-cache",
    type=float,
    default=2,
    dest="sqlite_cache_mb",
    help="Size of the SQLite in memory cache in megabytes.  Working data outside of this size causes disk I/O. [%(default)s]")
tests_detail = """\
bigstmt:

  Supplies the SQL as a single string consisting of multiple
  statements.  apsw handles this normally via cursor.execute while
  sqlite3 requires that cursor.executescript is called.  The string
  will be several kilobytes and with a scale of 50 will be in the
  megabyte range.  This is the kind of query you would run if you were
  restoring a database from a dump.  (Note that sqlite3 silently
  ignores returned data which also makes it execute faster).

statements:

  Runs the SQL queries but uses bindings (? parameters). eg::

    for i in range(3):
       cursor.execute("insert into table foo values(?)", (i,))

  This test has many hits of the statement cache.

statements_nobindings:

  Runs the SQL queries but doesn't use bindings. eg::

    cursor.execute("insert into table foo values(0)")
    cursor.execute("insert into table foo values(1)")
    cursor.execute("insert into table foo values(2)")

  This test has no statement cache hits and shows the overhead of
       having a statement cache.

  In theory all the tests above should run in almost identical time
  as well as when using the SQLite command line shell.  This tool
  shows you what happens in practise.
    \n"""

if __name__ == "__main__":
    options = parser.parse_args()

    if options.tests_detail:
        print(tests_detail)
        sys.exit(0)

    if not options.apsw and not options.sqlite3 and not options.dump_filename:
        parser.error("You should select at least one of --apsw or --sqlite3 or --dump-sql")

    if options.vfs == "passthru":
        import apsw

        class passthru(apsw.VFS):

            def __init__(self):
                super().__init__("passthru", "")

            def xOpen(self, name, flags):
                return passthrufile("", name, flags)

        class passthrufile(apsw.VFSFile):
            pass

        keepalive = passthru()

    if options.vfs and options.database in (":memory:", ""):
        parser.error("For vfs to take effect you need a non-memory database filename")

    doit()