1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
from __future__ import annotations
from ..common import _aliases
from .._internal import get_xp
from ._info import __array_namespace_info__
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from typing import Optional, Union
from ._typing import ndarray, Device, Dtype, NestedSequence, SupportsBufferProtocol
import numpy as np
bool = np.bool_
# Basic renames
acos = np.arccos
acosh = np.arccosh
asin = np.arcsin
asinh = np.arcsinh
atan = np.arctan
atan2 = np.arctan2
atanh = np.arctanh
bitwise_left_shift = np.left_shift
bitwise_invert = np.invert
bitwise_right_shift = np.right_shift
concat = np.concatenate
pow = np.power
arange = get_xp(np)(_aliases.arange)
empty = get_xp(np)(_aliases.empty)
empty_like = get_xp(np)(_aliases.empty_like)
eye = get_xp(np)(_aliases.eye)
full = get_xp(np)(_aliases.full)
full_like = get_xp(np)(_aliases.full_like)
linspace = get_xp(np)(_aliases.linspace)
ones = get_xp(np)(_aliases.ones)
ones_like = get_xp(np)(_aliases.ones_like)
zeros = get_xp(np)(_aliases.zeros)
zeros_like = get_xp(np)(_aliases.zeros_like)
UniqueAllResult = get_xp(np)(_aliases.UniqueAllResult)
UniqueCountsResult = get_xp(np)(_aliases.UniqueCountsResult)
UniqueInverseResult = get_xp(np)(_aliases.UniqueInverseResult)
unique_all = get_xp(np)(_aliases.unique_all)
unique_counts = get_xp(np)(_aliases.unique_counts)
unique_inverse = get_xp(np)(_aliases.unique_inverse)
unique_values = get_xp(np)(_aliases.unique_values)
std = get_xp(np)(_aliases.std)
var = get_xp(np)(_aliases.var)
cumulative_sum = get_xp(np)(_aliases.cumulative_sum)
cumulative_prod = get_xp(np)(_aliases.cumulative_prod)
clip = get_xp(np)(_aliases.clip)
permute_dims = get_xp(np)(_aliases.permute_dims)
reshape = get_xp(np)(_aliases.reshape)
argsort = get_xp(np)(_aliases.argsort)
sort = get_xp(np)(_aliases.sort)
nonzero = get_xp(np)(_aliases.nonzero)
ceil = get_xp(np)(_aliases.ceil)
floor = get_xp(np)(_aliases.floor)
trunc = get_xp(np)(_aliases.trunc)
matmul = get_xp(np)(_aliases.matmul)
matrix_transpose = get_xp(np)(_aliases.matrix_transpose)
tensordot = get_xp(np)(_aliases.tensordot)
sign = get_xp(np)(_aliases.sign)
def _supports_buffer_protocol(obj):
try:
memoryview(obj)
except TypeError:
return False
return True
# asarray also adds the copy keyword, which is not present in numpy 1.0.
# asarray() is different enough between numpy, cupy, and dask, the logic
# complicated enough that it's easier to define it separately for each module
# rather than trying to combine everything into one function in common/
def asarray(
obj: Union[
ndarray,
bool,
int,
float,
NestedSequence[bool | int | float],
SupportsBufferProtocol,
],
/,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
copy: "Optional[Union[bool, np._CopyMode]]" = None,
**kwargs,
) -> ndarray:
"""
Array API compatibility wrapper for asarray().
See the corresponding documentation in the array library and/or the array API
specification for more details.
"""
if device not in ["cpu", None]:
raise ValueError(f"Unsupported device for NumPy: {device!r}")
if hasattr(np, '_CopyMode'):
if copy is None:
copy = np._CopyMode.IF_NEEDED
elif copy is False:
copy = np._CopyMode.NEVER
elif copy is True:
copy = np._CopyMode.ALWAYS
else:
# Not present in older NumPys. In this case, we cannot really support
# copy=False.
if copy is False:
raise NotImplementedError("asarray(copy=False) requires a newer version of NumPy.")
return np.array(obj, copy=copy, dtype=dtype, **kwargs)
def astype(
x: ndarray,
dtype: Dtype,
/,
*,
copy: bool = True,
device: Optional[Device] = None,
) -> ndarray:
return x.astype(dtype=dtype, copy=copy)
# count_nonzero returns a python int for axis=None and keepdims=False
# https://github.com/numpy/numpy/issues/17562
def count_nonzero(
x : ndarray,
axis=None,
keepdims=False
) -> ndarray:
result = np.count_nonzero(x, axis=axis, keepdims=keepdims)
if axis is None and not keepdims:
return np.asarray(result)
return result
# These functions are completely new here. If the library already has them
# (i.e., numpy 2.0), use the library version instead of our wrapper.
if hasattr(np, 'vecdot'):
vecdot = np.vecdot
else:
vecdot = get_xp(np)(_aliases.vecdot)
if hasattr(np, 'isdtype'):
isdtype = np.isdtype
else:
isdtype = get_xp(np)(_aliases.isdtype)
if hasattr(np, 'unstack'):
unstack = np.unstack
else:
unstack = get_xp(np)(_aliases.unstack)
__all__ = _aliases.__all__ + ['__array_namespace_info__', 'asarray', 'astype',
'acos', 'acosh', 'asin', 'asinh', 'atan',
'atan2', 'atanh', 'bitwise_left_shift',
'bitwise_invert', 'bitwise_right_shift',
'bool', 'concat', 'count_nonzero', 'pow']
_all_ignore = ['np', 'get_xp']
|