1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
"""
Array API Inspection namespace
This is the namespace for inspection functions as defined by the array API
standard. See
https://data-apis.org/array-api/latest/API_specification/inspection.html for
more details.
"""
import torch
from functools import cache
class __array_namespace_info__:
"""
Get the array API inspection namespace for PyTorch.
The array API inspection namespace defines the following functions:
- capabilities()
- default_device()
- default_dtypes()
- dtypes()
- devices()
See
https://data-apis.org/array-api/latest/API_specification/inspection.html
for more details.
Returns
-------
info : ModuleType
The array API inspection namespace for PyTorch.
Examples
--------
>>> info = np.__array_namespace_info__()
>>> info.default_dtypes()
{'real floating': numpy.float64,
'complex floating': numpy.complex128,
'integral': numpy.int64,
'indexing': numpy.int64}
"""
__module__ = 'torch'
def capabilities(self):
"""
Return a dictionary of array API library capabilities.
The resulting dictionary has the following keys:
- **"boolean indexing"**: boolean indicating whether an array library
supports boolean indexing. Always ``True`` for PyTorch.
- **"data-dependent shapes"**: boolean indicating whether an array
library supports data-dependent output shapes. Always ``True`` for
PyTorch.
See
https://data-apis.org/array-api/latest/API_specification/generated/array_api.info.capabilities.html
for more details.
See Also
--------
__array_namespace_info__.default_device,
__array_namespace_info__.default_dtypes,
__array_namespace_info__.dtypes,
__array_namespace_info__.devices
Returns
-------
capabilities : dict
A dictionary of array API library capabilities.
Examples
--------
>>> info = np.__array_namespace_info__()
>>> info.capabilities()
{'boolean indexing': True,
'data-dependent shapes': True}
"""
return {
"boolean indexing": True,
"data-dependent shapes": True,
# 'max rank' will be part of the 2024.12 standard
"max dimensions": 64,
}
def default_device(self):
"""
The default device used for new PyTorch arrays.
See Also
--------
__array_namespace_info__.capabilities,
__array_namespace_info__.default_dtypes,
__array_namespace_info__.dtypes,
__array_namespace_info__.devices
Returns
-------
device : str
The default device used for new PyTorch arrays.
Examples
--------
>>> info = np.__array_namespace_info__()
>>> info.default_device()
'cpu'
"""
return torch.device("cpu")
def default_dtypes(self, *, device=None):
"""
The default data types used for new PyTorch arrays.
Parameters
----------
device : str, optional
The device to get the default data types for. For PyTorch, only
``'cpu'`` is allowed.
Returns
-------
dtypes : dict
A dictionary describing the default data types used for new PyTorch
arrays.
See Also
--------
__array_namespace_info__.capabilities,
__array_namespace_info__.default_device,
__array_namespace_info__.dtypes,
__array_namespace_info__.devices
Examples
--------
>>> info = np.__array_namespace_info__()
>>> info.default_dtypes()
{'real floating': torch.float32,
'complex floating': torch.complex64,
'integral': torch.int64,
'indexing': torch.int64}
"""
# Note: if the default is set to float64, the devices like MPS that
# don't support float64 will error. We still return the default_dtype
# value here because this error doesn't represent a different default
# per-device.
default_floating = torch.get_default_dtype()
default_complex = torch.complex64 if default_floating == torch.float32 else torch.complex128
default_integral = torch.int64
return {
"real floating": default_floating,
"complex floating": default_complex,
"integral": default_integral,
"indexing": default_integral,
}
def _dtypes(self, kind):
bool = torch.bool
int8 = torch.int8
int16 = torch.int16
int32 = torch.int32
int64 = torch.int64
uint8 = torch.uint8
# uint16, uint32, and uint64 are present in newer versions of pytorch,
# but they aren't generally supported by the array API functions, so
# we omit them from this function.
float32 = torch.float32
float64 = torch.float64
complex64 = torch.complex64
complex128 = torch.complex128
if kind is None:
return {
"bool": bool,
"int8": int8,
"int16": int16,
"int32": int32,
"int64": int64,
"uint8": uint8,
"float32": float32,
"float64": float64,
"complex64": complex64,
"complex128": complex128,
}
if kind == "bool":
return {"bool": bool}
if kind == "signed integer":
return {
"int8": int8,
"int16": int16,
"int32": int32,
"int64": int64,
}
if kind == "unsigned integer":
return {
"uint8": uint8,
}
if kind == "integral":
return {
"int8": int8,
"int16": int16,
"int32": int32,
"int64": int64,
"uint8": uint8,
}
if kind == "real floating":
return {
"float32": float32,
"float64": float64,
}
if kind == "complex floating":
return {
"complex64": complex64,
"complex128": complex128,
}
if kind == "numeric":
return {
"int8": int8,
"int16": int16,
"int32": int32,
"int64": int64,
"uint8": uint8,
"float32": float32,
"float64": float64,
"complex64": complex64,
"complex128": complex128,
}
if isinstance(kind, tuple):
res = {}
for k in kind:
res.update(self.dtypes(kind=k))
return res
raise ValueError(f"unsupported kind: {kind!r}")
@cache
def dtypes(self, *, device=None, kind=None):
"""
The array API data types supported by PyTorch.
Note that this function only returns data types that are defined by
the array API.
Parameters
----------
device : str, optional
The device to get the data types for.
kind : str or tuple of str, optional
The kind of data types to return. If ``None``, all data types are
returned. If a string, only data types of that kind are returned.
If a tuple, a dictionary containing the union of the given kinds
is returned. The following kinds are supported:
- ``'bool'``: boolean data types (i.e., ``bool``).
- ``'signed integer'``: signed integer data types (i.e., ``int8``,
``int16``, ``int32``, ``int64``).
- ``'unsigned integer'``: unsigned integer data types (i.e.,
``uint8``, ``uint16``, ``uint32``, ``uint64``).
- ``'integral'``: integer data types. Shorthand for ``('signed
integer', 'unsigned integer')``.
- ``'real floating'``: real-valued floating-point data types
(i.e., ``float32``, ``float64``).
- ``'complex floating'``: complex floating-point data types (i.e.,
``complex64``, ``complex128``).
- ``'numeric'``: numeric data types. Shorthand for ``('integral',
'real floating', 'complex floating')``.
Returns
-------
dtypes : dict
A dictionary mapping the names of data types to the corresponding
PyTorch data types.
See Also
--------
__array_namespace_info__.capabilities,
__array_namespace_info__.default_device,
__array_namespace_info__.default_dtypes,
__array_namespace_info__.devices
Examples
--------
>>> info = np.__array_namespace_info__()
>>> info.dtypes(kind='signed integer')
{'int8': numpy.int8,
'int16': numpy.int16,
'int32': numpy.int32,
'int64': numpy.int64}
"""
res = self._dtypes(kind)
for k, v in res.copy().items():
try:
torch.empty((0,), dtype=v, device=device)
except:
del res[k]
return res
@cache
def devices(self):
"""
The devices supported by PyTorch.
Returns
-------
devices : list of str
The devices supported by PyTorch.
See Also
--------
__array_namespace_info__.capabilities,
__array_namespace_info__.default_device,
__array_namespace_info__.default_dtypes,
__array_namespace_info__.dtypes
Examples
--------
>>> info = np.__array_namespace_info__()
>>> info.devices()
[device(type='cpu'), device(type='mps', index=0), device(type='meta')]
"""
# Torch doesn't have a straightforward way to get the list of all
# currently supported devices. To do this, we first parse the error
# message of torch.device to get the list of all possible types of
# device:
try:
torch.device('notadevice')
except RuntimeError as e:
# The error message is something like:
# "Expected one of cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia, privateuseone device type at start of device string: notadevice"
devices_names = e.args[0].split('Expected one of ')[1].split(' device type')[0].split(', ')
# Next we need to check for different indices for different devices.
# device(device_name, index=index) doesn't actually check if the
# device name or index is valid. We have to try to create a tensor
# with it (which is why this function is cached).
devices = []
for device_name in devices_names:
i = 0
while True:
try:
a = torch.empty((0,), device=torch.device(device_name, index=i))
if a.device in devices:
break
devices.append(a.device)
except:
break
i += 1
return devices
|