1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
import math
import pytest
import numpy as np
import array
from numpy.testing import assert_equal
from array_api_compat import ( # noqa: F401
is_numpy_array, is_cupy_array, is_torch_array,
is_dask_array, is_jax_array, is_pydata_sparse_array,
is_ndonnx_array,
is_numpy_namespace, is_cupy_namespace, is_torch_namespace,
is_dask_namespace, is_jax_namespace, is_pydata_sparse_namespace,
is_array_api_strict_namespace, is_ndonnx_namespace,
)
from array_api_compat import (
device, is_array_api_obj, is_lazy_array, is_writeable_array, size, to_device
)
from ._helpers import all_libraries, import_, wrapped_libraries, xfail
is_array_functions = {
'numpy': 'is_numpy_array',
# 'cupy': 'is_cupy_array',
'torch': 'is_torch_array',
'dask.array': 'is_dask_array',
# 'jax.numpy': 'is_jax_array',
# 'sparse': 'is_pydata_sparse_array',
# 'ndonnx': 'is_ndonnx_array',
}
is_namespace_functions = {
'numpy': 'is_numpy_namespace',
# 'cupy': 'is_cupy_namespace',
'torch': 'is_torch_namespace',
'dask.array': 'is_dask_namespace',
# 'jax.numpy': 'is_jax_namespace',
# 'sparse': 'is_pydata_sparse_namespace',
# 'array_api_strict': 'is_array_api_strict_namespace',
# 'ndonnx': 'is_ndonnx_namespace',
}
@pytest.mark.parametrize('library', is_array_functions.keys())
@pytest.mark.parametrize('func', is_array_functions.values())
def test_is_xp_array(library, func):
lib = import_(library)
is_func = globals()[func]
x = lib.asarray([1, 2, 3])
assert is_func(x) == (func == is_array_functions[library])
assert is_array_api_obj(x)
@pytest.mark.parametrize('library', is_namespace_functions.keys())
@pytest.mark.parametrize('func', is_namespace_functions.values())
def test_is_xp_namespace(library, func):
lib = import_(library)
is_func = globals()[func]
assert is_func(lib) == (func == is_namespace_functions[library])
@pytest.mark.parametrize('library', all_libraries)
def test_xp_is_array_generics(library):
"""
Test that scalar selection on a xp.ndarray always returns
an object that matches with exactly one among the is_*_array
function of the same library and is_numpy_array.
"""
lib = import_(library)
x = lib.asarray([1, 2, 3])
x0 = x[0]
matches = []
for library2, func in is_array_functions.items():
is_func = globals()[func]
if is_func(x0):
matches.append(library2)
if library == "array_api_strict":
# There is no is_array_api_strict_array() function
assert matches == []
else:
assert matches in ([library], ["numpy"])
@pytest.mark.parametrize("library", all_libraries)
def test_is_writeable_array(library):
lib = import_(library)
x = lib.asarray([1, 2, 3])
if is_writeable_array(x):
x[1] = 4
else:
with pytest.raises((TypeError, ValueError)):
x[1] = 4
def test_is_writeable_array_numpy():
x = np.asarray([1, 2, 3])
assert is_writeable_array(x)
x.flags.writeable = False
assert not is_writeable_array(x)
@pytest.mark.parametrize("library", all_libraries)
def test_size(library):
xp = import_(library)
x = xp.asarray([1, 2, 3])
assert size(x) == 3
@pytest.mark.parametrize("library", all_libraries)
def test_size_none(library):
if library == "sparse":
pytest.skip("No arange(); no indexing by sparse arrays")
xp = import_(library)
x = xp.arange(10)
x = x[x < 5]
# dask.array now has shape=(nan, ) and size=nan
# ndonnx now has shape=(None, ) and size=None
# Eager libraries have shape=(5, ) and size=5
assert size(x) in (None, 5)
@pytest.mark.parametrize("library", all_libraries)
def test_is_lazy_array(library):
lib = import_(library)
x = lib.asarray([1, 2, 3])
assert isinstance(is_lazy_array(x), bool)
@pytest.mark.parametrize("shape", [(math.nan,), (1, math.nan), (None, ), (1, None)])
def test_is_lazy_array_nan_size(shape, monkeypatch):
"""Test is_lazy_array() on an unknown Array API compliant object
with NaN (like Dask) or None (like ndonnx) in its shape
"""
xp = import_("array_api_strict")
x = xp.asarray(1)
assert not is_lazy_array(x)
monkeypatch.setattr(type(x), "shape", shape)
assert is_lazy_array(x)
@pytest.mark.parametrize("exc", [TypeError, AssertionError])
def test_is_lazy_array_bool_raises(exc, monkeypatch):
"""Test is_lazy_array() on an unknown Array API compliant object
where calling bool() raises:
- TypeError: e.g. like jitted JAX. This is the proper exception which
lazy arrays should raise as per the Array API specification
- something else: e.g. like Dask, where bool() triggers compute()
which can result in any kind of exception to be raised
"""
xp = import_("array_api_strict")
x = xp.asarray(1)
assert not is_lazy_array(x)
def __bool__(self):
raise exc("Hello world")
monkeypatch.setattr(type(x), "__bool__", __bool__)
assert is_lazy_array(x)
@pytest.mark.parametrize(
'func',
list(is_array_functions.values())
+ ["is_array_api_obj", "is_lazy_array", "is_writeable_array"]
)
def test_is_array_any_object(func):
"""Test that is_*_array functions return False and don't raise on non-array objects
"""
func = globals()[func]
# These objects are missing attributes such as __name__
assert not func(object())
assert not func(None)
assert not func(1)
class C:
pass
assert not func(C())
@pytest.mark.parametrize("library", all_libraries)
def test_device(library, request):
if library == "ndonnx":
xfail(request, reason="Needs ndonnx >=0.9.4")
xp = import_(library, wrapper=True)
# We can't test much for device() and to_device() other than that
# x.to_device(x.device) works.
x = xp.asarray([1, 2, 3])
dev = device(x)
x2 = to_device(x, dev)
assert device(x2) == device(x)
x3 = xp.asarray(x, device=dev)
assert device(x3) == device(x)
@pytest.mark.parametrize("library", wrapped_libraries)
def test_to_device_host(library):
# different libraries have different semantics
# for DtoH transfers; ensure that we support a portable
# shim for common array libs
# see: https://github.com/scipy/scipy/issues/18286#issuecomment-1527552919
xp = import_(library, wrapper=True)
expected = np.array([1, 2, 3])
x = xp.asarray([1, 2, 3])
x = to_device(x, "cpu")
# torch will return a genuine Device object, but
# the other libs will do something different with
# a `device(x)` query; however, what's really important
# here is that we can test portably after calling
# to_device(x, "cpu") to return to host
assert_equal(x, expected)
@pytest.mark.parametrize("target_library", is_array_functions.keys())
@pytest.mark.parametrize("source_library", is_array_functions.keys())
def test_asarray_cross_library(source_library, target_library, request):
if source_library == "dask.array" and target_library == "torch":
# TODO: remove xfail once
# https://github.com/dask/dask/issues/8260 is resolved
xfail(request, reason="Bug in dask raising error on conversion")
elif (
source_library == "ndonnx"
and target_library not in ("array_api_strict", "ndonnx", "numpy")
):
xfail(request, reason="The truth value of lazy Array Array(dtype=Boolean) is unknown")
elif source_library == "ndonnx" and target_library == "numpy":
xfail(request, reason="produces numpy array of ndonnx scalar arrays")
elif source_library == "jax.numpy" and target_library == "torch":
xfail(request, reason="casts int to float")
elif source_library == "cupy" and target_library != "cupy":
# cupy explicitly disallows implicit conversions to CPU
pytest.skip(reason="cupy does not support implicit conversion to CPU")
elif source_library == "sparse" and target_library != "sparse":
pytest.skip(reason="`sparse` does not allow implicit densification")
src_lib = import_(source_library, wrapper=True)
tgt_lib = import_(target_library, wrapper=True)
is_tgt_type = globals()[is_array_functions[target_library]]
a = src_lib.asarray([1, 2, 3], dtype=src_lib.int32)
b = tgt_lib.asarray(a)
assert is_tgt_type(b), f"Expected {b} to be a {tgt_lib.ndarray}, but was {type(b)}"
assert b.dtype == tgt_lib.int32
@pytest.mark.parametrize("library", wrapped_libraries)
def test_asarray_copy(library):
# Note, we have this test here because the test suite currently doesn't
# test the copy flag to asarray() very rigorously. Once
# https://github.com/data-apis/array-api-tests/issues/241 is fixed we
# should be able to delete this.
xp = import_(library, wrapper=True)
asarray = xp.asarray
is_lib_func = globals()[is_array_functions[library]]
all = xp.all if library != 'dask.array' else lambda x: xp.all(x).compute()
if library == 'numpy' and xp.__version__[0] < '2' and not hasattr(xp, '_CopyMode') :
supports_copy_false_other_ns = False
supports_copy_false_same_ns = False
elif library == 'cupy':
supports_copy_false_other_ns = False
supports_copy_false_same_ns = False
elif library == 'dask.array':
supports_copy_false_other_ns = False
supports_copy_false_same_ns = True
else:
supports_copy_false_other_ns = True
supports_copy_false_same_ns = True
a = asarray([1])
b = asarray(a, copy=True)
assert is_lib_func(b)
a[0] = 0
assert all(b[0] == 1)
assert all(a[0] == 0)
a = asarray([1])
if supports_copy_false_same_ns:
b = asarray(a, copy=False)
assert is_lib_func(b)
a[0] = 0
assert all(b[0] == 0)
else:
pytest.raises(NotImplementedError, lambda: asarray(a, copy=False))
a = asarray([1])
if supports_copy_false_same_ns:
pytest.raises(ValueError, lambda: asarray(a, copy=False,
dtype=xp.float64))
else:
pytest.raises(NotImplementedError, lambda: asarray(a, copy=False, dtype=xp.float64))
a = asarray([1])
b = asarray(a, copy=None)
assert is_lib_func(b)
a[0] = 0
assert all(b[0] == 0)
a = asarray([1.0], dtype=xp.float32)
assert a.dtype == xp.float32
b = asarray(a, dtype=xp.float64, copy=None)
assert is_lib_func(b)
assert b.dtype == xp.float64
a[0] = 0.0
assert all(b[0] == 1.0)
a = asarray([1.0], dtype=xp.float64)
assert a.dtype == xp.float64
b = asarray(a, dtype=xp.float64, copy=None)
assert is_lib_func(b)
assert b.dtype == xp.float64
a[0] = 0.0
assert all(b[0] == 0.0)
# Python built-in types
for obj in [True, 0, 0.0, 0j, [0], [[0]]]:
asarray(obj, copy=True) # No error
asarray(obj, copy=None) # No error
if supports_copy_false_other_ns:
pytest.raises(ValueError, lambda: asarray(obj, copy=False))
else:
pytest.raises(NotImplementedError, lambda: asarray(obj, copy=False))
# Use the standard library array to test the buffer protocol
a = array.array('f', [1.0])
b = asarray(a, copy=True)
assert is_lib_func(b)
a[0] = 0.0
assert all(b[0] == 1.0)
a = array.array('f', [1.0])
if supports_copy_false_other_ns:
b = asarray(a, copy=False)
assert is_lib_func(b)
a[0] = 0.0
assert all(b[0] == 0.0)
else:
pytest.raises(NotImplementedError, lambda: asarray(a, copy=False))
a = array.array('f', [1.0])
b = asarray(a, copy=None)
assert is_lib_func(b)
a[0] = 0.0
if library in ('cupy', 'dask.array'):
# A copy is required for libraries where the default device is not CPU
# dask changed behaviour of copy=None in 2024.12 to copy;
# this wrapper ensures the same behaviour in older versions too.
# https://github.com/dask/dask/pull/11524/
assert all(b[0] == 1.0)
else:
assert all(b[0] == 0.0)
@pytest.mark.parametrize("library", ["numpy", "cupy", "torch"])
def test_clip_out(library):
"""Test non-standard out= parameter for clip()
(see "Avoid Restricting Behavior that is Outside the Scope of the Standard"
in https://data-apis.org/array-api-compat/dev/special-considerations.html)
"""
xp = import_(library, wrapper=True)
x = xp.asarray([10, 20, 30])
out = xp.zeros_like(x)
xp.clip(x, 15, 25, out=out)
expect = xp.asarray([15, 20, 25])
assert xp.all(out == expect)
|