1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
|
"""
This module implements a particle system for complex animcation effects. For more details, see
http://asciimatics.readthedocs.io/en/latest/animation.html
"""
from abc import ABCMeta, abstractmethod
from copy import copy
from math import pi, sin, cos, sqrt
from random import uniform, randint
from asciimatics.effects import Effect
from asciimatics.screen import Screen
class Particle():
"""
A single particle in a Particle Effect.
"""
def __init__(self, chars, x, y, dx, dy, colours, life_time, move,
next_colour=None, next_char=None, parm=None,
on_create=None, on_each=None, on_destroy=None):
"""
:param chars: String of characters to use for the particle.
:param x: The initial horizontal position of the particle.
:param y: The initial vertical position of the particle.
:param dx: The initial horizontal velocity of the particle.
:param dy: The initial vertical velocity of the particle.
:param colours: A list of colour tuples to use for the particle.
:param life_time: The life time of the particle.
:param move: A function which returns the next location of the particle.
:param next_colour: An optional function to return the next colour for
the particle. Defaults to a linear progression of `chars`.
:param next_char: An optional function to return the next character for
the particle. Defaults to a linear progression of `colours`.
:param parm: An optional parameter for use within any of the
:param on_create: An optional function to spawn new particles when this
particle first is created.
:param on_each: An optional function to spawn new particles for every
frame of this particle (other than creation/destruction).
:param on_destroy: An optional function to spawn new particles when this
particle is destroyed.
"""
self.chars = chars
self.x = x
self.y = y
self.dx = dx
self.dy = dy
self.colours = colours
self.time = 0
self.life_time = life_time
self._move = move
self._next_colour = (
self._default_next_colour if next_colour is None else next_colour)
self._next_char = (
self._default_next_char if next_char is None else next_char)
self._last = None
self.parm = parm
self._on_create = on_create
self._on_each = on_each
self._on_destroy = on_destroy
@staticmethod
def _default_next_char(particle):
"""
Default next character implementation - linear progression through
each character.
"""
return particle.chars[
(len(particle.chars) - 1) * particle.time // particle.life_time]
@staticmethod
def _default_next_colour(particle):
"""
Default next colour implementation - linear progression through
each colour tuple.
"""
return particle.colours[
(len(particle.colours) - 1) * particle.time // particle.life_time]
def last(self):
"""
The last attributes returned for this particle - typically used for
clearing out the particle on the next frame. See :py:meth:`.next` for
details of the returned results.
"""
return self._last
def next(self):
"""
The set of attributes for this particle for the next frame to be
rendered.
:returns: A tuple of (character, x, y, fg, attribute, bg)
"""
# Get next particle details
x, y = self._move(self)
colour = self._next_colour(self)
char = self._next_char(self)
self._last = char, x, y, colour[0], colour[1], colour[2]
self.time += 1
# Trigger any configured events
if self.time == 1 and self._on_create is not None:
self._on_create(self)
elif self.life_time == self.time and self._on_destroy is not None:
self._on_destroy(self)
elif self._on_each is not None:
self._on_each(self)
return self._last
class ParticleEmitter():
"""
An emitter for a particle system to create a set of :py:obj:`._Particle`
objects for a :py:obj:`.ParticleEffect`. After initialization, the
emitter will be called once per frame to be displayed on the Screen.
"""
def __init__(self, screen, x, y, count, new_particle, spawn, life_time,
blend=False):
"""
:param screen: The screen to which the particle system will be rendered.
:param x: The x location of origin of the particle system.
:param y: The y location of origin of the particle system.
:param count: The count of new particles to spawn on each frame.
:param new_particle: The function to call to spawn a new particle.
:param spawn: The number of frames for which to spawn particles.
:param life_time: The life time of the whole particle system.
:param blend: Whether to blend particles or not. A blended system
picks the colour based on the number of overlapping particles,
while an unblended one picks the colour based on a the state of
Each Particle individually as they are drawn.
Defaults to False.
"""
super().__init__()
self._screen = screen
self._x = x
self._y = y
self._count = count
self._new_particle = new_particle
self._life_time = life_time
self.particles = []
self.time_left = spawn
self._blend = blend
@staticmethod
def _find_colour(particle, start_index, screen_data):
"""
Helper function to find an existing colour in the particle palette.
"""
_, fg2, attr2, bg2 = screen_data
index = start_index
for i, colours in enumerate(particle.colours):
if (fg2, attr2, bg2) == colours:
index = i
break
return index
def update(self):
"""
The function to draw a new frame for the particle system.
"""
# Spawn new particles if required
if self.time_left > 0:
self.time_left -= 1
for _ in range(self._count):
new_particle = self._new_particle()
if new_particle is not None:
self.particles.append(new_particle)
# Now draw them all
for particle in self.particles:
# Clear our the old particle
last = particle.last()
if last is not None:
char, x, y, fg, attr, bg = last
screen_data = self._screen.get_from(x, y)
if self._blend and screen_data:
index = self._find_colour(particle, 0, screen_data) - 1
fg, attr, bg = particle.colours[max(index, 0)]
self._screen.print_at(" ", x, y, fg, attr, bg)
if particle.time < particle.life_time:
# Draw the new one
char, x, y, fg, attr, bg = particle.next()
screen_data = self._screen.get_from(x, y)
if self._blend and screen_data:
index = self._find_colour(particle, -1, screen_data) + 1
fg, attr, bg = \
particle.colours[min(index, len(particle.colours) - 1)]
self._screen.print_at(char, x, y, fg, attr, bg)
else:
self.particles.remove(particle)
class ParticleEffect(Effect, metaclass=ABCMeta):
"""
An Effect that uses a :py:obj:`.ParticleEmitter` to create the animation.
To define a new ParticleEffect, you must implement the reset() method to
construct a chain of ParticleEmitter objects and append them to the internal
_active_systems list.
"""
def __init__(self, screen, x, y, life_time, **kwargs):
"""
:param screen: The Screen being used for the Scene.
:param x: The column (x coordinate) for the origin of the effect.
:param y: The line (y coordinate) for the origin of the effect.
:param life_time: The life time of the effect.
Also see the common keyword arguments in :py:obj:`.Effect`.
"""
super().__init__(screen, **kwargs)
self._x = x
self._y = y
self._life_time = life_time
self._active_systems = []
self.reset()
@abstractmethod
def reset(self):
"""
Reset the particle effect back to its initial state. This must be
implemented by the child classes.
"""
def _update(self, frame_no):
# Take a copy in case a new system is added to the list this iteration.
for system in copy(self._active_systems):
if len(system.particles) > 0 or system.time_left > 0:
system.update()
else:
self._active_systems.remove(system)
@property
def stop_frame(self):
return self._stop_frame
class Rocket(ParticleEmitter):
"""
A rocket being launched from the ground.
"""
def __init__(self, screen, x, y, life_time, on_destroy=None):
"""
:param screen: The Screen being used for this particle system.
:param x: The column (x coordinate) for the origin of the rocket.
:param y: The line (y coordinate) for the origin of the rocket.
:param life_time: The life time of the rocket.
:param on_destroy: The function to call when the rocket explodes.
"""
super().__init__(
screen, x, screen.height - 1, 1, self._next_particle, 1, life_time)
self._end_y = y
self._acceleration = (self._end_y - self._y) // life_time
self._on_destroy = on_destroy
def _next_particle(self):
return Particle("|",
self._x,
self._y,
0,
self._acceleration,
[(Screen.COLOUR_YELLOW, Screen.A_BOLD, 0)],
self._life_time,
self._move,
on_destroy=self._on_destroy)
def _move(self, particle):
particle.x += particle.dx
particle.y += particle.dy
if particle.y <= self._end_y:
# Rounding errors may mean we need to end slightly early.
particle.y = self._end_y
particle.time = self._life_time - 1
return int(particle.x), int(particle.y)
class RingExplosion(ParticleEmitter):
"""
A classic firework explosion in a simple ring.
"""
def __init__(self, screen, x, y, life_time):
"""
:param screen: The Screen being used for this particle system.
:param x: The column (x coordinate) for the origin of this explosion.
:param y: The line (y coordinate) for the origin of this explosion.
:param life_time: The life time of this explosion.
"""
super().__init__(
screen, x, y, 30, self._next_particle, 1, life_time)
self._colour = randint(1, 7)
self._acceleration = 1.0 - (1.0 / life_time)
def _next_particle(self):
direction = uniform(0, 2 * pi)
return Particle("***:. ",
self._x,
self._y,
sin(direction) * 3 * 8 / self._life_time,
cos(direction) * 1.5 * 8 / self._life_time,
[(self._colour, Screen.A_BOLD, 0),
(self._colour, 0, 0),
(0, 0, 0)],
self._life_time,
self._explode)
def _explode(self, particle):
# Simulate some gravity and slowdown in explosion
particle.dy = particle.dy * self._acceleration + 0.03
particle.dx *= self._acceleration
particle.x += particle.dx
particle.y += particle.dy
return int(particle.x), int(particle.y)
class SerpentExplosion(ParticleEmitter):
"""
A firework explosion where each trail changes direction.
"""
def __init__(self, screen, x, y, life_time):
"""
:param screen: The Screen being used for this particle system.
:param x: The column (x coordinate) for the origin of this explosion.
:param y: The line (y coordinate) for the origin of this explosion.
:param life_time: The life time of this explosion.
"""
super().__init__(
screen, x, y, 8, self._next_particle, 2, life_time)
self._colour = randint(1, 7)
def _next_particle(self):
direction = uniform(0, 2 * pi)
acceleration = uniform(0, 2 * pi)
return Particle("++++- ",
self._x,
self._y,
cos(direction),
sin(direction) / 2,
[(self._colour, Screen.A_BOLD, 0), (0, 0, 0)],
self._life_time,
self._explode,
parm=acceleration)
@staticmethod
def _explode(particle):
# Change direction like a serpent firework.
if particle.time % 3 == 0:
particle.parm = uniform(0, 2 * pi)
particle.dx = (particle.dx + cos(particle.parm) / 2) * 0.8
particle.dy = (particle.dy + sin(particle.parm) / 4) * 0.8
particle.x += particle.dx
particle.y += particle.dy
return int(particle.x), int(particle.y)
class StarExplosion(ParticleEmitter):
"""
A classic firework explosion to a Peony shape with trails.
"""
def __init__(self, screen, x, y, life_time, points, on_each):
"""
:param screen: The Screen being used for this particle system.
:param x: The column (x coordinate) for the origin of this explosion.
:param y: The line (y coordinate) for the origin of this explosion.
:param life_time: The life time of this explosion.
:param points: Number of points the explosion should have.
:param on_each: The function to call to spawn a trail.
"""
super().__init__(
screen, x, y, points, self._next_particle, 1, life_time)
self._colour = randint(1, 7)
self._acceleration = 1.0 - (1.0 / life_time)
self._on_each = on_each
self._points = points
self._point_count = 0
def _next_particle(self):
direction = self._point_count * 2 * pi / self._points
self._point_count += 1
return Particle("+",
self._x,
self._y,
sin(direction) * 3 * 8 / self._life_time,
cos(direction) * 1.5 * 8 / self._life_time,
[(self._colour, Screen.A_BOLD, 0), (0, 0, 0)],
self._life_time,
self._explode,
on_each=self._on_each)
def _explode(self, particle):
# Simulate some gravity and slowdown in explosion
particle.dy = particle.dy * self._acceleration + 0.03
particle.dx *= self._acceleration
particle.x += particle.dx
particle.y += particle.dy
return int(particle.x), int(particle.y)
class StarTrail(ParticleEmitter):
"""
A trail for a :py:obj:`.StarExplosion`.
"""
def __init__(self, screen, x, y, life_time, colour):
"""
:param screen: The Screen being used for this particle system.
:param x: The column (x coordinate) for the origin of this trail.
:param y: The line (y coordinate) for the origin of this trail.
:param life_time: The life time of this trail.
:param colour: The colour of this trail.
"""
super().__init__(
screen, x, y, 1, self._next_particle, 1, life_time)
self._colour = colour
def _next_particle(self):
return Particle("+:,. ",
self._x,
self._y,
0,
0,
[(self._colour, Screen.A_BOLD, 0),
(self._colour, 0, 0),
(0, 0, 0)],
self._life_time,
self._twinkle)
@staticmethod
def _twinkle(particle):
# Simulate some gravity
particle.dy += 0.03
particle.y += particle.dy
return int(particle.x), int(particle.y)
class PalmExplosion(ParticleEmitter):
"""
A classic firework explosion into a palm shape.
"""
def __init__(self, screen, x, y, life_time, on_each=None):
"""
:param screen: The Screen being used for this particle system.
:param x: The column (x coordinate) for the origin of this explosion.
:param y: The line (y coordinate) for the origin of this explosion.
:param life_time: The life time of this explosion.
:param on_each: The function to call to spawn a trail.
"""
super().__init__(
screen, x, y, 6, self._next_particle, 2, life_time)
self._colour = randint(1, 7)
self._on_each = on_each
self._arc_start = uniform(pi / 6, pi / 3)
self._arc_end = self._arc_start + uniform(pi / 6, pi / 2)
def _next_particle(self):
direction = uniform(self._arc_start, self._arc_end)
return Particle("* ",
self._x,
self._y,
cos(direction) * 1.5,
-sin(direction),
[(self._colour, Screen.A_BOLD, 0),
(0, 0, 0)],
self._life_time,
self._explode,
on_each=self._on_each)
@staticmethod
def _explode(particle):
# Simulate some gravity
particle.dy += 0.2
particle.x += particle.dx
particle.y += particle.dy
return int(particle.x), int(particle.y)
class ExplosionFlames(ParticleEmitter):
"""
An explosion of flame and smoke.
"""
def __init__(self, screen, x, y, life_time):
"""
:param screen: The Screen being used for this particle system.
:param x: The column (x coordinate) for the origin of this explosion.
:param y: The line (y coordinate) for the origin of this explosion.
:param life_time: The life time of this explosion.
"""
super().__init__(
screen, x, y, 30, self._next_particle, life_time - 10, life_time,
blend=True)
def _next_particle(self):
direction = uniform(0, 2 * pi)
d = self._life_time - 10
r = uniform(0, sin(pi * (d - self.time_left) / (d * 2))) * 3.0
return Particle("#",
self._x + sin(direction) * r * 2.0,
self._y + cos(direction) * r,
sin(direction) / 2.0,
cos(direction) / 4.0,
[
(Screen.COLOUR_BLACK, 0, 0),
(Screen.COLOUR_RED, 0, 0),
(Screen.COLOUR_RED, Screen.A_BOLD, 0),
(Screen.COLOUR_YELLOW, Screen.A_BOLD, 0),
(Screen.COLOUR_WHITE, Screen.A_BOLD, 0),
],
10,
self._burn,
next_colour=self._colour)
@staticmethod
def _burn(particle):
particle.x += particle.dx
particle.y += particle.dy
return int(particle.x), int(particle.y)
@staticmethod
def _colour(particle):
return particle.colours[0]
class DropEmitter(ParticleEmitter):
"""
Replicate the whole screen with Particles and then drop them a cell at a
time.
"""
def __init__(self, screen, life_time):
"""
:param screen: The Screen being used for this particle system.
:param life_time: The life time of this particle system.
"""
super().__init__(
screen, 0, 0, 20, self._next_particle, life_time, life_time)
self._particles = None
self._full_count = 0
def _next_particle(self):
# Find all particles on the Screen when we create our first particle.
if self._particles is None:
self._particles = []
for x in range(self._screen.width):
for y in range(self._screen.height):
ch, fg, attr, bg = self._screen.get_from(x, y)
if ch != 32:
self._particles.insert(
randint(0, len(self._particles)),
(x, y, ch, fg, attr, bg))
self._full_count += 1
# Stop now if there were no more particles to move.
if len(self._particles) == 0:
return None
# We got here, so there must still be some screen estate to move.
if randint(0, len(self._particles)) < self._full_count * 0.1:
x, y, ch, fg, attr, bg = self._particles.pop()
return Particle(chr(ch), x, y, 0.0, 0.0, [(fg, attr, bg)], self._life_time, self._move)
# Keep lint happy
return None
@staticmethod
def _move(particle):
result = int(particle.x), int(particle.y)
particle.x += particle.dx
particle.y += particle.dy
particle.dy += 0.3
return result
class ShotEmitter(ParticleEmitter):
"""
Replicate the whole screen with Particles and then explode the screen from
a given location.
"""
def __init__(self, screen, x, y, diameter, life_time):
"""
:param screen: The Screen being used for this particle system.
:param x: The x position of the origin of the explosion.
:param y: The y position of the origin of the explosion.
:param diameter: The diameter of the explosion.
:param life_time: The life time of this particle system.
"""
super().__init__(
screen, x, y, 50, self._next_particle, life_time, life_time)
self._particles = None
self._diameter = diameter
def _next_particle(self):
# Find all particles on the Screen when we create our first particle
# and sort by distance from the origin.
if self._particles is None:
self._particles = []
for x in range(self._screen.width):
for y in range(self._screen.height):
ch, fg, attr, bg = self._screen.get_from(x, y)
if ch != 32:
self._particles.append((x, y, ch, fg, attr, bg))
if self._diameter:
self._particles = filter(self._filter, self._particles)
self._particles = sorted(self._particles, key=self._sort, reverse=True)
# Stop now if there were no more particles to move.
if len(self._particles) == 0:
return None
# We got here, so there must still be some screen estate to move.
x, y, ch, fg, attr, bg = self._particles.pop()
r = min(10, max(0.001, sqrt(((x - self._x) ** 2) + ((y - self._y) ** 2))))
return Particle(chr(ch), x, y,
(x - self._x) * 40.0 / r ** 2,
(y - self._y) * 20.0 / r ** 2,
[(fg, attr, bg)],
self._life_time,
self._move)
def _sort(self, data):
dx = data[0] - self._x
dy = data[1] - self._y
return (dx * dx / 4.0) + (dy * dy)
def _filter(self, data):
dx = data[0] - self._x
dy = data[1] - self._y
return dx ** 2 / 4.0 + dy ** 2 < self._diameter ** 2 / 4.0
@staticmethod
def _move(particle):
result = int(particle.x), int(particle.y)
if (particle.dx, particle.dy) == (0, 0):
particle.dx, particle.dy = 100, 100
particle.x += particle.dx
particle.y += particle.dy
return result
class RainSource(ParticleEmitter):
"""
Source of the raindrops for a rain storm effect. This emits rain drops
from a single line at the top of the screen (starting sufficiently off-
screen to ensure that it can cover all the screen due to horizontal motion).
"""
def __init__(self, screen, life_time, on_each):
"""
:param screen: The Screen being used for this particle system.
:param life_time: The life time of this particle system.
:param on_each: Function to call on each iteration of the particle.
"""
super().__init__(
screen, 0, 0, 4, self._next_particle, life_time, life_time)
self._particles = None
self._on_each = on_each
def _next_particle(self):
speed = randint(1, 3)
return Particle(" ``\\"[speed],
randint(-self._screen.height, self._screen.width), 0,
(speed + 1) / 2.0,
(speed + 1) / 2.0,
[(Screen.COLOUR_CYAN, 0, 0)],
self._life_time,
self._move,
on_each=self._on_each)
@staticmethod
def _move(particle):
particle.x += particle.dx
particle.y += particle.dy
return int(particle.x), int(particle.y)
class Splash(ParticleEmitter):
"""
Splash effect for falling rain.
"""
def __init__(self, screen, x, y):
"""
:param screen: The Screen being used for this particle system.
"""
super().__init__(
screen, x, y, 1, self._next_particle, 1, 3)
def _next_particle(self):
return Particle("v",
self._x, self._y,
0, 0,
[(Screen.COLOUR_CYAN, 0, 0)],
self._life_time,
self._splash)
@staticmethod
def _splash(particle):
return int(particle.x), int(particle.y)
class StarFirework(ParticleEffect):
"""
Classic rocket with star explosion.
"""
def reset(self):
self._active_systems = []
self._active_systems.append(
Rocket(self._screen, self._x, self._y, 10, on_destroy=self._next))
def _next(self, parent):
self._active_systems.append(
StarExplosion(
self._screen, parent.x, parent.y, self._life_time - 10,
randint(6, 20), on_each=self._trail))
def _trail(self, parent):
if len(self._active_systems) < 150 and randint(0, 100) < 50:
self._active_systems.insert(
0, StarTrail(self._screen,
parent.x,
parent.y,
10,
parent.colours[0][0]))
class RingFirework(ParticleEffect):
"""
Classic rocket with ring explosion.
"""
def reset(self):
self._active_systems = []
self._active_systems.append(
Rocket(self._screen, self._x, self._y, 10, on_destroy=self._next))
def _next(self, parent):
self._active_systems.append(RingExplosion(
self._screen, parent.x, parent.y, self._life_time - 10))
class SerpentFirework(ParticleEffect):
"""
A firework where each trail changes direction.
"""
def reset(self):
self._active_systems = []
self._active_systems.append(
Rocket(self._screen, self._x, self._y, 10, on_destroy=self._next))
def _next(self, parent):
self._active_systems.append(SerpentExplosion(
self._screen, parent.x, parent.y, self._life_time - 10))
class PalmFirework(ParticleEffect):
"""
Classic palm shaped firework.
"""
def reset(self):
self._active_systems = []
self._active_systems.append(
Rocket(self._screen, self._x, self._y, 10, on_destroy=self._next))
def _next(self, parent):
self._active_systems.append(PalmExplosion(
self._screen, parent.x, parent.y, self._life_time - 10,
on_each=self._trail))
def _trail(self, parent):
if len(self._active_systems) < 100 and randint(0, 100) < 80:
self._active_systems.insert(
0, StarTrail(self._screen,
parent.x,
parent.y,
10,
parent.colours[0][0]))
class Explosion(ParticleEffect):
"""
An explosion effect.
"""
def reset(self):
self._active_systems = []
self._active_systems.append(
ExplosionFlames(self._screen, self._x, self._y, self._life_time))
class DropScreen(ParticleEffect):
"""
Drop all the text on the screen as if it was subject to gravity.
"""
def __init__(self, screen, life_time, **kwargs):
"""
See :py:obj:`.ParticleEffect` for details of the parameters.
"""
# No need for an origin as this uses the whole screen.
super().__init__(screen, 0, 0, life_time, **kwargs)
def reset(self):
self._active_systems = []
self._active_systems.append(
DropEmitter(self._screen, self._life_time))
class ShootScreen(ParticleEffect):
"""
Shoot the screen out like a massive gunshot.
"""
def __init__(self, screen, x, y, life_time, diameter=None, **kwargs):
"""
See :py:obj:`.ParticleEffect` for details of the parameters.
In addition, it is possible to set the diameter of this effect using the extra keyword parameter.
"""
# Need to set the field first because the underlying constructor calls reset.
self._diameter = diameter
super().__init__(screen, x, y, life_time, **kwargs)
def reset(self):
self._active_systems = []
self._active_systems.append(
ShotEmitter(self._screen, self._x, self._y, self._diameter, self._life_time))
class Rain(ParticleEffect):
"""
Rain storm effect.
"""
def __init__(self, screen, life_time, **kwargs):
"""
See :py:obj:`.ParticleEffect` for details of the parameters.
"""
# No need for an origin as this uses the whole screen.
super().__init__(screen, 0, 0, life_time, **kwargs)
def reset(self):
self._active_systems = []
self._active_systems.append(
RainSource(self._screen, self._life_time, self._collision))
def _collision(self, particle):
# Already calculated new position, so go back in history
_, x, y, _, _, _ = particle.last()
# Note that dx = dy, so simply calculation of next point to check.
current_char = None
dx = 0
for dx in range(min(1, int(particle.dx))):
next_point = self._screen.get_from(int(x + dx), int(y + dx))
if next_point is None:
current_char = None
break
current_char = next_point[0]
if current_char != 32:
break
# If there's a collision, kill this drop and make a splash.
if (current_char not in [32, None, ord("`"), ord("\\"), ord("v")] or
particle.y + dx >= self._screen.height):
particle.time = particle.life_time
self._active_systems.append(
Splash(self._screen, x + dx - 1, y + dx - 1))
|