1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import sys
from math import sin, cos, pi, copysign, floor
from asciimatics.effects import Effect
from asciimatics.event import KeyboardEvent
from asciimatics.exceptions import ResizeScreenError, StopApplication
from asciimatics.renderers import ColourImageFile
from asciimatics.screen import Screen
from asciimatics.scene import Scene
from asciimatics.widgets import PopUpDialog
HELP = """
Use the following keys:
- Cursor keys to move.
- M to toggle the mini-map
- X to quit
- 1 to 4 to change rendering mode.
Can you find grumpy cat?
"""
LEVEL_MAP = """
XXXXXXXXXXXXXXXX
X X
X X X X
X X X X X
X XXX X XXXX X
X XXX X XX XX
X X XXX XXXXX
X X XXX XXXXX X
X X X X
X XXXXX XXXXXX
X X
XXXXXXXXXXXXXX X
""".strip().split("\n")
IMAGE_HEIGHT = 64
class Image():
"""
Class to handle image stripe rendering.
"""
def __init__(self, image):
self._image = image
def next_frame(self):
self._frame = self._image.rendered_text
def draw_stripe(self, screen, height, x, image_x):
# Clip required dimensions.
y_start, y_end = 0, height
if height > screen.height:
y_start = (height - screen.height) // 2
y_end = y_start + screen.height + 1
# Draw the stripe for the required region.
for sy in range(y_start, y_end):
try:
y = int((screen.height - height) / 2) + sy
image_y = int(sy * IMAGE_HEIGHT / height)
char = self._frame[0][image_y][image_x]
# Unicode images use . for background only pixels; ascii ones use space.
if char not in (" ", "."):
fg, attr, bg = self._frame[1][image_y][image_x]
attr = 0 if attr is None else attr
bg = 0 if bg is None else bg
screen.print_at(char, x, y, fg, attr, bg)
except IndexError:
pass
class Sprite():
"""
Dynamically sized sprite.
"""
def __init__(self, state, x, y, images):
self._state = state
self.x, self.y = x, y
self._images = images
def next_frame(self):
for image in self._images:
image.next_frame()
def draw_stripe(self, height, x, image_x):
# Resize offset in image for the expected height of this stripe.
self._images[self._state.mode % 2].draw_stripe(
self._state.screen, height, x, int(image_x * IMAGE_HEIGHT / height))
class GameState():
"""
Persistent state for this application.
"""
def __init__(self):
self.player_angle = pi / 2
self.x, self.y = 1.5, 1.5
self.map = LEVEL_MAP
self.mode = 0
self.show_mini_map = True
self.images = {}
self.sprites = []
self.screen = None
def load_image(self, screen, filename):
self.images[filename] = [None, None]
self.images[filename][0] = Image(ColourImageFile(screen, filename, IMAGE_HEIGHT, uni=False))
self.images[filename][1] = Image(ColourImageFile(screen, filename, IMAGE_HEIGHT, uni=True))
def update_screen(self, screen):
# Save off active screen.
self.screen = screen
# Images only need initializing once - they don't actually use the screen after construction.
if len(self.images) <= 0:
self.load_image(screen, "grumpy_cat.jpg")
self.load_image(screen, "colour_globe.gif")
self.load_image(screen, "wall.png")
# Demo uses static sprites, so can reset every time now we have images loaded.
self.sprites = [
Sprite(self, 3.5, 6.5, self.images["grumpy_cat.jpg"]),
Sprite(self, 14.5, 11.5, self.images["colour_globe.gif"]),
Sprite(self, 0, 0, self.images["wall.png"])
]
@property
def map_x(self):
return int(floor(self.x))
@property
def map_y(self):
return int(floor(self.y))
def safe_update_x(self, new_x):
new_x += self.x
if 0 <= self.y < len(self.map) and 0 <= new_x < len(self.map[0]):
if self.map[self.map_y][int(floor(new_x))] == "X":
return
self.x = new_x
def safe_update_y(self, new_y):
new_y += self.y
if 0 <= new_y < len(self.map) and 0 <= self.x < len(self.map[0]):
if self.map[int(floor(new_y))][self.map_x] == "X":
return
self.y = new_y
def safe_update_angle(self, new_angle):
self.player_angle += new_angle
if self.player_angle < 0:
self.player_angle += 2 * pi
if self.player_angle > 2 * pi:
self.player_angle -= 2 * pi
class MiniMap(Effect):
"""
Class to draw a small map based on the one stored in the GameState.
"""
# Translation from angle to map directions.
_DIRECTIONS = [
(0, pi / 4, ">>"),
(pi / 4, 3 * pi / 4, "vv"),
(3 * pi / 4, 5 * pi / 4, "<<"),
(5 * pi / 4, 7 * pi / 4, "^^")
]
def __init__(self, screen, game_state, size=5):
super(MiniMap, self).__init__(screen)
self._state = game_state
self._size = size
self._x = self._screen.width - 2 * (self._size + 1)
self._y = self._screen.height - (self._size + 1)
def _update(self, _):
# Draw the miniature map.
for mx in range(self._size):
for my in range(self._size):
px = self._state.map_x + mx - self._size // 2
py = self._state.map_y + my - self._size // 2
if (0 <= py < len(self._state.map) and
0 <= px < len(self._state.map[0]) and self._state.map[py][px] != " "):
colour = Screen.COLOUR_RED
else:
colour = Screen.COLOUR_BLACK
self._screen.print_at(" ", self._x + 2 * mx, self._y + my, colour, bg=colour)
# Draw the player
text = ">>"
for a, b, direction in self._DIRECTIONS:
if a < self._state.player_angle <= b:
text = direction
break
self._screen.print_at(
text, self._x + self._size // 2 * 2, self._y + self._size // 2, Screen.COLOUR_GREEN)
@property
def frame_update_count(self):
# No animation required.
return 0
@property
def stop_frame(self):
# No specific end point for this Effect. Carry on running forever.
return 0
def reset(self):
# Nothing special to do. Just need this to satisfy the ABC.
pass
class RayCaster(Effect):
"""
Raycaster effect - will draw a 3D rendition of the map stored in the GameState.
This class follows the logic from https://lodev.org/cgtutor/raycasting.html.
"""
# Textures to emulate h distance.
_TEXTURES = "@&#$AHhwai;:. "
def __init__(self, screen, game_state):
super(RayCaster, self).__init__(screen)
# Controls for rendering.
#
# Ideally we'd just use a field of vision (FOV) to represent the screen aspect ratio. However, this
# looks wrong for very wide screens. So, limit to 4:1 aspect ratio, then calculate FOV.
self.width = min(screen.height * 4, screen.width)
self.FOV = self.width / screen.height / 4
# Remember game state for later.
self._state = game_state
# Set up raycasting sizes and colours
self._block_size = screen.height // 3
if screen.colours >= 256:
self._colours = [x for x in zip(range(255, 232, -1), [0] * 24, range(255, 232, -1))]
else:
self._colours = [(Screen.COLOUR_WHITE, Screen.A_BOLD, Screen.COLOUR_WHITE) for _ in range(6)]
self._colours.extend([(Screen.COLOUR_WHITE, Screen.A_NORMAL, Screen.COLOUR_WHITE) for _ in range(9)])
self._colours.extend([(Screen.COLOUR_BLACK, Screen.A_BOLD, Screen.COLOUR_BLACK) for _ in range(9)])
self._colours.append((Screen.COLOUR_BLACK, Screen.A_NORMAL, Screen.COLOUR_BLACK))
def _update(self, _):
# First draw the background - which is theoretically the floor and ceiling.
self._screen.clear_buffer(Screen.COLOUR_BLACK, Screen.A_NORMAL, Screen.COLOUR_BLACK)
# Now do the ray casting across the visible canvas.
# Compensate for aspect ratio by treating 2 cells as a single pixel.
x_offset = int((self._screen.width - self.width ) // 2)
last_side = None
z_buffer = [999999 for _ in range(self.width + 1)]
camera_x = cos(self._state.player_angle + pi / 2) * self.FOV
camera_y = sin(self._state.player_angle + pi / 2) * self.FOV
for sx in range(0, self.width, 2 - self._state.mode // 2):
# Calculate the ray for this vertical slice.
camera_segment = 2 * sx / self.width - 1
ray_x = cos(self._state.player_angle) + camera_x * camera_segment
ray_y = sin(self._state.player_angle) + camera_y * camera_segment
# Representation of the ray within our map
map_x = self._state.map_x
map_y = self._state.map_y
hit = False
hit_side = False
# Logical length along the ray from one x or y-side to next x or y-side
try:
ratio_to_x = abs(1 / ray_x)
except ZeroDivisionError:
ratio_to_x = 999999
try:
ratio_to_y = abs(1 / ray_y)
except ZeroDivisionError:
ratio_to_y = 999999
# Calculate block step direction and initial partial step to the next side (on same
# logical scale as the previous ratios).
step_x = int(copysign(1, ray_x))
step_y = int(copysign(1, ray_y))
side_x = (self._state.x - map_x) if ray_x < 0 else (map_x + 1.0 - self._state.x)
side_x *= ratio_to_x
side_y = (self._state.y - map_y) if ray_y < 0 else (map_y + 1.0 - self._state.y)
side_y *= ratio_to_y
# Give up if we'll never intersect the map
while (((step_x < 0 and map_x >= 0) or (step_x > 0 and map_x < len(self._state.map[0]))) and
((step_y < 0 and map_y >= 0) or (step_y > 0 and map_y < len(self._state.map)))):
# Move along the ray to the next nearest side (measured in distance along the ray).
if side_x < side_y:
side_x += ratio_to_x
map_x += step_x
hit_side = False
else:
side_y += ratio_to_y
map_y += step_y
hit_side = True
# Check whether the ray has now hit a wall.
if 0 <= map_x < len(self._state.map[0]) and 0 <= map_y < len(self._state.map):
if self._state.map[map_y][map_x] == "X":
hit = True
break
# Draw wall if needed.
if hit:
# Figure out textures and colours to use based on the distance to the wall.
if hit_side:
dist = (map_y - self._state.y + (1 - step_y) / 2) / ray_y
else:
dist = (map_x - self._state.x + (1 - step_x) / 2) / ray_x
z_buffer[sx], z_buffer[sx + 1] = dist, dist
# Are we drawing block colours or ray traced walls?
if self._state.mode < 2:
# Simple block colours - get height and text attributes
wall = min(self._screen.height, int(self._screen.height / dist))
colour, attr, bg = self._colours[min(len(self._colours) - 1, int(3 * dist))]
text = self._TEXTURES[min(len(self._TEXTURES) - 1, int(2 * dist))]
# Now draw the wall segment
for sy in range(wall):
self._screen.print_at(
text * 2, x_offset + sx, (self._screen.height - wall) // 2 + sy,
colour, attr, bg=0 if self._state.mode == 0 else bg)
else:
# Ray casting - get wall texture
image = self._state.images["wall.png"][self._state.mode % 2]
# Get texture height and stripe offset bearing in mind pixels are 1x2 aspect ratio.
wall = int(self._screen.height / dist)
if hit_side:
wall_x = self._state.x + dist * ray_x;
else:
wall_x = self._state.y + dist * ray_y;
wall_x -= int(wall_x);
texture_x = int(wall_x * IMAGE_HEIGHT * 2);
if (not hit_side) and ray_x > 0:
texture_x = IMAGE_HEIGHT * 2 - texture_x - 1;
if hit_side and ray_y < 0:
texture_x = IMAGE_HEIGHT * 2 - texture_x - 1;
# Now draw it
image.next_frame()
image.draw_stripe(self._screen, wall, x_offset + sx, texture_x)
# Draw a line when we change surfaces to help make it easier to see the 3d effect
if hit_side != last_side:
last_side = hit_side
for sy in range(wall):
self._screen.print_at("|", x_offset + sx, (self._screen.height - wall) // 2 + sy, 0, bg=0)
# Now draw sprites
ray_x = cos(self._state.player_angle)
ray_y = sin(self._state.player_angle)
for sprite in self._state.sprites:
# Translate sprite position to relative to camera
sprite_x = sprite.x - self._state.x
sprite_y = sprite.y - self._state.y
inv_det = 1.0 / (camera_x * ray_y - ray_x * camera_y)
transform_x = inv_det * (ray_y * sprite_x - ray_x * sprite_y);
transform_y = inv_det * (-camera_y * sprite_x + camera_x * sprite_y)
# Sprite location on camera plane.
sprite_screen_x = int((self.width / 2) * (1 + transform_x / transform_y));
# Calculate height (and width) of the sprite on screen
sprite_height = abs(int(self._screen.height / (transform_y)))
# Don't bother if behind the viewing plane (or too big to render).
if transform_y > 0:
# Update for animation
sprite.next_frame()
# Loop through every vertical stripe of the sprite on screen
start = max(0, sprite_screen_x - sprite_height)
end = min(self.width, sprite_screen_x + sprite_height)
for stripe in range(start, end):
if stripe > 0 and stripe < self.width and transform_y < z_buffer[stripe]:
texture_x = int(stripe - (-sprite_height + sprite_screen_x) * sprite_height / sprite_height)
sprite.draw_stripe(sprite_height, x_offset + stripe, texture_x)
@property
def frame_update_count(self):
# Animation required - every other frame should be OK for demo.
return 2
@property
def stop_frame(self):
# No specific end point for this Effect. Carry on running forever.
return 0
def reset(self):
# Nothing special to do. Just need this to satisfy the ABC.
pass
class GameController(Scene):
"""
Scene to control the combined Effects for the demo.
This class handles the user input, updating the game state and updating required Effects as needed.
Drawing of the Scene is then handled in the usual way.
"""
def __init__(self, screen, game_state):
# Standard setup for every screen.
self._screen = screen
self._state = game_state
self._mini_map = MiniMap(screen, self._state, self._screen.height // 4)
effects = [
RayCaster(screen, self._state)
]
super(GameController, self).__init__(effects, -1)
# Add minimap if required.
if self._state.show_mini_map:
self.add_effect(self._mini_map)
def process_event(self, event):
# Allow standard event processing first
if super(GameController, self).process_event(event) is None:
return
# If that didn't handle it, check for a key that this demo understands.
if isinstance(event, KeyboardEvent):
c = event.key_code
if c in (ord("x"), ord("X")):
raise StopApplication("User exit")
elif c in (ord("a"), Screen.KEY_LEFT):
self._state.safe_update_angle(-pi / 45)
elif c in (ord("d"), Screen.KEY_RIGHT):
self._state.safe_update_angle(pi / 45)
elif c in (ord("w"), Screen.KEY_UP):
self._state.safe_update_x(cos(self._state.player_angle) / 5)
self._state.safe_update_y(sin(self._state.player_angle) / 5)
elif c in (ord("s"), Screen.KEY_DOWN):
self._state.safe_update_x(-cos(self._state.player_angle) / 5)
self._state.safe_update_y(-sin(self._state.player_angle) / 5)
elif c in (ord("1"), ord("2"), ord("3"), ord("4")):
self._state.mode = c - ord("1")
elif c in (ord("m"), ord("M")):
self._state.show_mini_map = not self._state.show_mini_map
if self._state.show_mini_map:
self.add_effect(self._mini_map)
else:
self.remove_effect(self._mini_map)
elif c in (ord("h"), ord("H")):
self.add_effect(PopUpDialog(self._screen, HELP, ["OK"]))
else:
# Not a recognised key - pass on to other handlers.
return event
else:
# Ignore other types of events.
return event
def demo(screen, game_state):
game_state.update_screen(screen)
screen.play([GameController(screen, game_state)], stop_on_resize=True)
if __name__ == "__main__":
game_state = GameState()
while True:
try:
Screen.wrapper(demo, catch_interrupt=False, arguments=[game_state])
sys.exit(0)
except ResizeScreenError:
pass
|