1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
ASDF - Advanced Scientific Data Format
======================================
.. _begin-badges:
.. image:: https://github.com/asdf-format/asdf/workflows/CI/badge.svg
:target: https://github.com/asdf-format/asdf/actions
:alt: CI Status
.. image:: https://github.com/asdf-format/asdf/workflows/Downstream/badge.svg
:target: https://github.com/asdf-format/asdf/actions
:alt: Downstream CI Status
.. image:: https://readthedocs.org/projects/asdf/badge/?version=latest
:target: https://asdf.readthedocs.io/en/latest/
.. image:: https://codecov.io/gh/asdf-format/asdf/branch/main/graphs/badge.svg
:target: https://codecov.io/gh/asdf-format/asdf
.. _begin-zenodo:
.. image:: https://zenodo.org/badge/18112754.svg
:target: https://zenodo.org/badge/latestdoi/18112754
.. _end-zenodo:
.. image:: https://img.shields.io/pypi/l/asdf.svg
:target: https://img.shields.io/pypi/l/asdf.svg
.. image:: https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white
:target: https://github.com/pre-commit/pre-commit
:alt: pre-commit
.. image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black
.. _end-badges:
.. _begin-summary-text:
The **A**\ dvanced **S**\ cientific **D**\ ata **F**\ ormat (ASDF) is a
next-generation interchange format for scientific data. This package
contains the Python implementation of the ASDF Standard. More
information on the ASDF Standard itself can be found
`here <https://asdf-standard.readthedocs.io>`__.
The ASDF format has the following features:
* Hierarchical and human-readable metadata in `YAML <http://yaml.org>`__ format
* Efficient binary array storage with support for memory mapping
and flexible compression.
* Content validation using schemas (using `JSON Schema <http://json-schema.org>`__)
* Native and transparent support for most basic Python data types,
with an extension API to add support for any custom Python object.
.. _end-summary-text:
ASDF is under active development `on github
<https://github.com/asdf-format/asdf>`__. More information on contributing
can be found `below <#contributing>`__.
Overview
--------
This section outlines basic use cases of the ASDF package for creating
and reading ASDF files.
Creating a file
~~~~~~~~~~~~~~~
.. _begin-create-file-text:
We're going to store several `numpy` arrays and other data to an ASDF file. We
do this by creating a "tree", which is simply a `dict`, and we provide it as
input to the constructor of `AsdfFile`:
.. code:: python
import asdf
import numpy as np
# Create some data
sequence = np.arange(100)
squares = sequence**2
random = np.random.random(100)
# Store the data in an arbitrarily nested dictionary
tree = {
"foo": 42,
"name": "Monty",
"sequence": sequence,
"powers": {"squares": squares},
"random": random,
}
# Create the ASDF file object from our data tree
af = asdf.AsdfFile(tree)
# Write the data to a new file
af.write_to("example.asdf")
If we open the newly created file's metadata section, we can see some of the key features
of ASDF on display:
.. _begin-example-asdf-metadata:
.. code:: yaml
#ASDF 1.0.0
#ASDF_STANDARD 1.2.0
%YAML 1.1
%TAG ! tag:stsci.edu:asdf/
--- !core/asdf-1.1.0
asdf_library: !core/software-1.0.0 {author: The ASDF Developers, homepage: 'http://github.com/asdf-format/asdf',
name: asdf, version: 2.0.0}
history:
extensions:
- !core/extension_metadata-1.0.0
extension_class: asdf.extension.BuiltinExtension
software: {name: asdf, version: 2.0.0}
foo: 42
name: Monty
powers:
squares: !core/ndarray-1.0.0
source: 1
datatype: int64
byteorder: little
shape: [100]
random: !core/ndarray-1.0.0
source: 2
datatype: float64
byteorder: little
shape: [100]
sequence: !core/ndarray-1.0.0
source: 0
datatype: int64
byteorder: little
shape: [100]
...
.. _end-example-asdf-metadata:
The metadata in the file mirrors the structure of the tree that was stored. It
is hierarchical and human-readable. Notice that metadata has been added to the
tree that was not explicitly given by the user. Notice also that the numerical
array data is not stored in the metadata tree itself. Instead, it is stored as
binary data blocks below the metadata section (not shown above).
.. _end-create-file-text:
.. _begin-compress-file:
It is possible to compress the array data when writing the file:
.. code:: python
af.write_to("compressed.asdf", all_array_compression="zlib")
The built-in compression algorithms are ``'zlib'``, and ``'bzp2'``. The
``'lz4'`` algorithm becomes available when the `lz4 <https://python-lz4.readthedocs.io/>`__ package
is installed. Other compression algorithms may be available via extensions.
.. _end-compress-file:
Reading a file
~~~~~~~~~~~~~~
.. _begin-read-file-text:
To read an existing ASDF file, we simply use the top-level `open` function of
the `asdf` package:
.. code:: python
import asdf
af = asdf.open("example.asdf")
The `open` function also works as a context handler:
.. code:: python
with asdf.open("example.asdf") as af:
...
.. warning::
The ``memmap`` argument replaces ``copy_arrays`` as of ASDF 4.0
(``memmap == not copy_arrays``).
To get a quick overview of the data stored in the file, use the top-level
`AsdfFile.info()` method:
.. code:: pycon
>>> import asdf
>>> af = asdf.open("example.asdf")
>>> af.info()
root (AsdfObject)
├─asdf_library (Software)
│ ├─author (str): The ASDF Developers
│ ├─homepage (str): http://github.com/asdf-format/asdf
│ ├─name (str): asdf
│ └─version (str): 2.8.0
├─history (dict)
│ └─extensions (list)
│ └─[0] (ExtensionMetadata)
│ ├─extension_class (str): asdf.extension.BuiltinExtension
│ └─software (Software)
│ ├─name (str): asdf
│ └─version (str): 2.8.0
├─foo (int): 42
├─name (str): Monty
├─powers (dict)
│ └─squares (NDArrayType): shape=(100,), dtype=int64
├─random (NDArrayType): shape=(100,), dtype=float64
└─sequence (NDArrayType): shape=(100,), dtype=int64
The `AsdfFile` behaves like a Python `dict`, and nodes are accessed like
any other dictionary entry:
.. code:: pycon
>>> af["name"]
'Monty'
>>> af["powers"]
{'squares': <array (unloaded) shape: [100] dtype: int64>}
Array data remains unloaded until it is explicitly accessed:
.. code:: pycon
>>> af["powers"]["squares"]
array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441,
484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024,
1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849,
1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916,
3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225,
4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776,
5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569,
7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604,
9801])
>>> import numpy as np
>>> expected = [x**2 for x in range(100)]
>>> np.equal(af["powers"]["squares"], expected).all()
True
Memory mapping can be enabled by providing ``memmap=True``
to `open`:
.. code:: python
af = asdf.open("example.asdf", memmap=True)
.. _end-read-file-text:
For more information and for advanced usage examples, see the
`documentation <#documentation>`__.
Extending ASDF
~~~~~~~~~~~~~~
Out of the box, the ``asdf`` package automatically serializes and
deserializes native Python types. It is possible to extend ``asdf`` by
implementing custom tags that correspond to custom user types. More
information on extending ASDF can be found in the `official
documentation <http://asdf.readthedocs.io/en/latest/#extending-asdf>`__.
Installation
------------
.. _begin-pip-install-text:
Stable releases of the ASDF Python package are registered `at
PyPi <https://pypi.python.org/pypi/asdf>`__. The latest stable version
can be installed using ``pip``:
::
$ pip install asdf
.. _begin-source-install-text:
The latest development version of ASDF is available from the ``main`` branch
`on github <https://github.com/asdf-format/asdf>`__. To clone the project:
::
$ git clone https://github.com/asdf-format/asdf
To install:
::
$ cd asdf
$ pip install .
To install in `development
mode <https://packaging.python.org/tutorials/distributing-packages/#working-in-development-mode>`__::
$ pip install -e .
.. _end-source-install-text:
Testing
-------
.. _begin-testing-text:
To install the test dependencies from a source checkout of the repository:
::
$ pip install -e ".[tests]"
To run the unit tests from a source checkout of the repository:
::
$ pytest
It is also possible to run the test suite from an installed version of
the package.
::
$ pip install "asdf[tests]"
$ pytest --pyargs asdf
It is also possible to run the tests using `tox
<https://tox.readthedocs.io/en/latest/>`__.
::
$ pip install tox
To list all available environments:
::
$ tox -va
To run a specific environment:
::
$ tox -e <envname>
.. _end-testing-text:
Documentation
-------------
More detailed documentation on this software package can be found
`here <https://asdf.readthedocs.io>`__.
More information on the ASDF Standard itself can be found
`here <https://asdf-standard.readthedocs.io>`__.
There are two mailing lists for ASDF:
* `asdf-users <https://groups.google.com/forum/#!forum/asdf-users>`_
* `asdf-developers <https://groups.google.com/forum/#!forum/asdf-developers>`_
If you are looking for the **A**\ daptable **S**\ eismic **D**\ ata
**F**\ ormat, information can be found
`here <https://seismic-data.org/>`__.
License
-------
ASDF is licensed under a BSD 3-clause style license. See `LICENSE.rst <LICENSE.rst>`_
for the `licenses folder <licenses>`_ for
licenses for any included software.
Contributing
------------
We welcome feedback and contributions to the project. Contributions of
code, documentation, or general feedback are all appreciated. Please
follow the `contributing guidelines <CONTRIBUTING.rst>`__ to submit an
issue or a pull request.
We strive to provide a welcoming community to all of our users by
abiding to the `Code of Conduct <CODE_OF_CONDUCT.md>`__.
|