1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
from __future__ import print_function
import numpy as np
from ase.data import atomic_numbers as ref_atomic_numbers
from ase.spacegroup import Spacegroup
from ase.cluster.base import ClusterBase
from ase.cluster.cluster import Cluster
class ClusterFactory(ClusterBase):
directions = [[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]
atomic_basis = np.array([[0., 0., 0.]])
element_basis = None
Cluster = Cluster # Make it possible to change the class of the object returned.
def __call__(self, symbols, surfaces, layers, latticeconstant=None,
center=None, vacuum=0.0, debug=0):
self.debug = debug
# Interpret symbol
self.set_atomic_numbers(symbols)
# Interpret lattice constant
if latticeconstant is None:
if self.element_basis is None:
self.lattice_constant = self.get_lattice_constant()
else:
raise ValueError("A lattice constant must be specified for a compound")
else:
self.lattice_constant = latticeconstant
self.set_basis()
if self.debug:
print("Lattice constant(s):", self.lattice_constant)
print("Lattice basis:\n", self.lattice_basis)
print("Resiprocal basis:\n", self.resiproc_basis)
print("Atomic basis:\n", self.atomic_basis)
self.set_surfaces_layers(surfaces, layers)
self.set_lattice_size(center)
if self.debug:
print("Center position:", self.center.round(2))
print("Base lattice size:", self.size)
cluster = self.make_cluster(vacuum)
cluster.symmetry = self.xtal_name
cluster.surfaces = self.surfaces.copy()
cluster.lattice_basis = self.lattice_basis.copy()
cluster.atomic_basis = self.atomic_basis.copy()
cluster.resiproc_basis = self.resiproc_basis.copy()
return cluster
def make_cluster(self, vacuum):
# Make the base crystal by repeating the unit cell
size = np.array(self.size)
translations = np.zeros((size.prod(), 3))
for h in range(size[0]):
for k in range(size[1]):
for l in range(size[2]):
i = h * (size[1] * size[2]) + k * size[2] + l
translations[i] = np.dot([h, k, l], self.lattice_basis)
atomic_basis = np.dot(self.atomic_basis, self.lattice_basis)
positions = np.zeros((len(translations) * len(atomic_basis), 3))
numbers = np.zeros(len(positions))
n = len(atomic_basis)
for i, trans in enumerate(translations):
positions[n*i:n*(i+1)] = atomic_basis + trans
numbers[n*i:n*(i+1)] = self.atomic_numbers
# Remove all atoms that is outside the defined surfaces
for s, l in zip(self.surfaces, self.layers):
n = self.miller_to_direction(s)
rmax = self.get_layer_distance(s, l + 0.1)
r = np.dot(positions - self.center, n)
mask = np.less(r, rmax)
if self.debug > 1:
print("Cutting %s at %i layers ~ %.3f A" % (s, l, rmax))
positions = positions[mask]
numbers = numbers[mask]
# Fit the cell, so it only just consist the atoms
min = np.zeros(3)
max = np.zeros(3)
for i in range(3):
v = self.directions[i]
r = np.dot(positions, v)
min[i] = r.min()
max[i] = r.max()
cell = max - min + vacuum
positions = positions - min + vacuum / 2.0
self.center = self.center - min + vacuum / 2.0
return self.Cluster(symbols=numbers, positions=positions, cell=cell)
def set_atomic_numbers(self, symbols):
"Extract atomic number from element"
# The types that can be elements: integers and strings
atomic_numbers = []
if self.element_basis is None:
if isinstance(symbols, str):
atomic_numbers.append(ref_atomic_numbers[symbols])
elif isinstance(symbols, int):
atomic_numbers.append(symbols)
else:
raise TypeError("The symbol argument must be a " +
"string or an atomic number.")
element_basis = [0] * len(self.atomic_basis)
else:
if isinstance(symbols, (list, tuple)):
nsymbols = len(symbols)
else:
nsymbols = 0
nelement_basis = max(self.element_basis) + 1
if nsymbols != nelement_basis:
raise TypeError("The symbol argument must be a sequence " +
"of length %d" % (nelement_basis,) +
" (one for each kind of lattice position")
for s in symbols:
if isinstance(s, str):
atomic_numbers.append(ref_atomic_numbers[s])
elif isinstance(s, int):
atomic_numbers.append(s)
else:
raise TypeError("The symbol argument must be a " +
"string or an atomic number.")
element_basis = self.element_basis
self.atomic_numbers = [atomic_numbers[n] for n in element_basis]
assert len(self.atomic_numbers) == len(self.atomic_basis)
def set_lattice_size(self, center):
if center is None:
offset = np.zeros(3)
else:
offset = np.array(center)
if (offset > 1.0).any() or (offset < 0.0).any():
raise ValueError("Center offset must lie within the lattice unit \
cell.")
max = np.ones(3)
min = -np.ones(3)
v = np.linalg.inv(self.lattice_basis.T)
for s, l in zip(self.surfaces, self.layers):
n = self.miller_to_direction(s) * self.get_layer_distance(s, l)
k = np.round(np.dot(v, n), 2)
for i in range(3):
if k[i] > 0.0:
k[i] = np.ceil(k[i])
elif k[i] < 0.0:
k[i] = np.floor(k[i])
if self.debug > 1:
print("Spaning %i layers in %s in lattice basis ~ %s" % (l, s, k))
max[k > max] = k[k > max]
min[k < min] = k[k < min]
self.center = np.dot(offset - min, self.lattice_basis)
self.size = (max - min + np.ones(3)).astype(int)
def set_surfaces_layers(self, surfaces, layers):
if len(surfaces) != len(layers):
raise ValueError("Improper size of surface and layer arrays: %i != %i"
% (len(surfaces), len(layers)))
sg = Spacegroup(self.spacegroup)
surfaces = np.array(surfaces)
layers = np.array(layers)
for i, s in enumerate(surfaces):
s = reduce_miller(s)
surfaces[i] = s
surfaces_full = surfaces.copy()
layers_full = layers.copy()
for s, l in zip(surfaces, layers):
equivalent_surfaces = sg.equivalent_reflections(s.reshape(-1, 3))
for es in equivalent_surfaces:
# If the equivalent surface (es) is not in the surface list,
# then append it.
if not np.equal(es, surfaces_full).all(axis=1).any():
surfaces_full = np.append(surfaces_full, es.reshape(1, 3), axis=0)
layers_full = np.append(layers_full, l)
self.surfaces = surfaces_full.copy()
self.layers = layers_full.copy()
def get_resiproc_basis(self, basis):
"""Returns the resiprocal basis to a given lattice (crystal) basis"""
k = 1 / np.dot(basis[0], cross(basis[1], basis[2]))
# The same as the inversed basis matrix transposed
return k * np.array([cross(basis[1], basis[2]),
cross(basis[2], basis[0]),
cross(basis[0], basis[1])])
# Helping functions
def cross(a, b):
"""The cross product of two vectors."""
return np.array([a[1]*b[2] - b[1]*a[2],
a[2]*b[0] - b[2]*a[0],
a[0]*b[1] - b[0]*a[1]])
def GCD(a,b):
"""Greatest Common Divisor of a and b."""
#print "--"
while a != 0:
#print a,b,">",
a,b = b%a,a
#print a,b
return b
def reduce_miller(hkl):
"""Reduce Miller index to the lowest equivalent integers."""
hkl = np.array(hkl)
old = hkl.copy()
d = GCD(GCD(hkl[0], hkl[1]), hkl[2])
while d != 1:
hkl = hkl // d
d = GCD(GCD(hkl[0], hkl[1]), hkl[2])
if np.dot(old, hkl) > 0:
return hkl
else:
return -hkl
|