File: constraints.py

package info (click to toggle)
python-ase 3.12.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,192 kB
  • ctags: 8,112
  • sloc: python: 93,375; sh: 99; makefile: 94
file content (1471 lines) | stat: -rw-r--r-- 53,745 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
from __future__ import division, print_function
from math import sqrt
from ase.geometry import find_mic

import numpy as np

__all__ = ['FixCartesian', 'FixBondLength', 'FixedMode', 'FixConstraintSingle',
           'FixAtoms', 'UnitCellFilter', 'FixScaled', 'StrainFilter',
           'FixedPlane', 'Filter', 'FixConstraint', 'FixedLine',
           'FixBondLengths', 'FixInternals', 'Hookean', 'ExternalForce']


def dict2constraint(dct):
    if dct['name'] not in __all__:
        raise ValueError
    return globals()[dct['name']](**dct['kwargs'])


def slice2enlist(s, n):
    """Convert a slice object into a list of (new, old) tuples."""
    if isinstance(s, slice):
        return enumerate(range(*s.indices(n)))
    return enumerate(s)


def constrained_indices(atoms, only_include=None):
    """Returns a list of indices for the atoms that are constrained
    by a constraint that is applied.  By setting only_include to a
    specific type of constraint you can make it only look for that
    given constraint.
    """
    indices = []
    for constraint in atoms.constraints:
        if only_include is not None:
            if not isinstance(constraint, only_include):
                continue
        indices.extend(np.array(constraint.get_indices()))
    return np.array(np.unique(indices))


class FixConstraint:
    """Base class for classes that fix one or more atoms in some way."""

    def index_shuffle(self, atoms, ind):
        """Change the indices.

        When the ordering of the atoms in the Atoms object changes,
        this method can be called to shuffle the indices of the
        constraints.

        ind -- List or tuple of indices.

        """
        raise NotImplementedError

    def repeat(self, m, n):
        """ basic method to multiply by m, needs to know the length
        of the underlying atoms object for the assignment of
        multiplied constraints to work.
        """
        msg = ("Repeat is not compatible with your atoms' constraints."
               ' Use atoms.set_constraint() before calling repeat to '
               'remove your constraints.')
        raise NotImplementedError(msg)

    def adjust_momenta(self, atoms, momenta):
        """Adjusts momenta in identical manner to forces."""
        self.adjust_forces(atoms, momenta)

    def copy(self):
        return dict2constraint(self.todict().copy())


class FixConstraintSingle(FixConstraint):
    """Base class for classes that fix a single atom."""

    def __init__(self, a):
        self.a = a

    def index_shuffle(self, atoms, ind):
        """The atom index must be stored as self.a."""
        newa = -1   # Signal error
        for new, old in slice2enlist(ind, len(atoms)):
            if old == self.a:
                newa = new
                break
        if newa == -1:
            raise IndexError('Constraint not part of slice')
        self.a = newa

    def get_indices(self):
        return [self.a]


class FixAtoms(FixConstraint):
    """Constraint object for fixing some chosen atoms."""

    def __init__(self, indices=None, mask=None):
        """Constrain chosen atoms.

        Parameters
        ----------
        indices : list of int
           Indices for those atoms that should be constrained.
        mask : list of bool
           One boolean per atom indicating if the atom should be
           constrained or not.

        Examples
        --------
        Fix all Copper atoms:

        >>> mask = [s == 'Cu' for s in atoms.get_chemical_symbols()]
        >>> c = FixAtoms(mask=mask)
        >>> atoms.set_constraint(c)

        Fix all atoms with z-coordinate less than 1.0 Angstrom:

        >>> c = FixAtoms(mask=atoms.positions[:, 2] < 1.0)
        >>> atoms.set_constraint(c)
        """

        if indices is None and mask is None:
            raise ValueError('Use "indices" or "mask".')
        if indices is not None and mask is not None:
            raise ValueError('Use only one of "indices" and "mask".')

        if mask is not None:
            indices = np.arange(len(mask))[np.asarray(mask, bool)]
        else:
            # Check for duplicates:
            srt = np.sort(indices)
            if (np.diff(srt) == 0).any():
                raise ValueError(
                    'FixAtoms: The indices array contained duplicates. '
                    'Perhaps you wanted to specify a mask instead, but '
                    'forgot the mask= keyword.')
        self.index = np.asarray(indices, int)

        if self.index.ndim != 1:
            raise ValueError('Wrong argument to FixAtoms class!')

        self.removed_dof = 3 * len(self.index)

    def adjust_positions(self, atoms, new):
        new[self.index] = atoms.positions[self.index]

    def adjust_forces(self, atoms, forces):
        forces[self.index] = 0.0

    def index_shuffle(self, atoms, ind):
        # See docstring of superclass
        index = []
        for new, old in slice2enlist(ind, len(atoms)):
            if old in self.index:
                index.append(new)
        if len(index) == 0:
            raise IndexError('All indices in FixAtoms not part of slice')
        self.index = np.asarray(index, int)

    def get_indices(self):
        return self.index

    def __repr__(self):
        return 'FixAtoms(indices=%s)' % ints2string(self.index)

    def todict(self):
        return {'name': 'FixAtoms',
                'kwargs': {'indices': self.index}}

    def repeat(self, m, n):
        i0 = 0
        natoms = 0
        if isinstance(m, int):
            m = (m, m, m)
        index_new = []
        for m2 in range(m[2]):
            for m1 in range(m[1]):
                for m0 in range(m[0]):
                    i1 = i0 + n
                    index_new += [i + natoms for i in self.index]
                    i0 = i1
                    natoms += n
        self.index = np.asarray(index_new, int)
        return self

    def delete_atoms(self, indices, natoms):
        """Removes atom number ind from the index array, if present.

        Required for removing atoms with existing FixAtoms constraints.
        """

        i = np.zeros(natoms, int) - 1
        new = np.delete(np.arange(natoms), indices)
        i[new] = np.arange(len(new))
        index = i[self.index]
        self.index = index[index >= 0]
        if len(self.index) == 0:
            return None
        return self


def ints2string(x, threshold=None):
    """Convert ndarray of ints to string."""
    if threshold is None or len(x) <= threshold:
        return str(x.tolist())
    return str(x[:threshold].tolist())[:-1] + ', ...]'


class FixBondLengths(FixConstraint):
    maxiter = 500

    def __init__(self, pairs, tolerance=1e-13, iterations=None):
        """iterations:
                Ignored"""
        self.pairs = np.asarray(pairs)
        self.tolerance = tolerance

        self.removed_dof = len(pairs)

    def adjust_positions(self, atoms, new):
        old = atoms.positions
        masses = atoms.get_masses()

        for i in range(self.maxiter):
            converged = True
            for a, b in self.pairs:
                r0 = old[a] - old[b]
                d0 = find_mic([r0], atoms.cell, atoms._pbc)[0][0]
                d1 = new[a] - new[b] - r0 + d0
                m = 1 / (1 / masses[a] + 1 / masses[b])
                x = 0.5 * (np.dot(d0, d0) - np.dot(d1, d1)) / np.dot(d0, d1)
                if abs(x) > self.tolerance:
                    new[a] += x * m / masses[a] * d0
                    new[b] -= x * m / masses[b] * d0
                    converged = False
            if converged:
                break
        else:
            raise RuntimeError('Did not converge')

    def adjust_momenta(self, atoms, p):
        old = atoms.positions
        masses = atoms.get_masses()
        for i in range(self.maxiter):
            converged = True
            for a, b in self.pairs:
                d = old[a] - old[b]
                d = find_mic([d], atoms.cell, atoms._pbc)[0][0]
                dv = p[a] / masses[a] - p[b] / masses[b]
                m = 1 / (1 / masses[a] + 1 / masses[b])
                x = -np.dot(dv, d) / np.dot(d, d)
                if abs(x) > self.tolerance:
                    p[a] += x * m * d
                    p[b] -= x * m * d
                    converged = False
            if converged:
                break
        else:
            raise RuntimeError('Did not converge')

    def adjust_forces(self, atoms, forces):
        self.constraint_forces = -forces
        self.adjust_momenta(atoms, forces)
        self.constraint_forces += forces

    def get_indices(self):
        return np.unique(self.pairs.ravel())

    def todict(self):
        return {'name': 'FixBondLengths',
                'kwargs': {'pairs': self.pairs,
                           'tolerance': self.tolerance}}

    def index_shuffle(self, atoms, ind):
        """Shuffle the indices of the two atoms in this constraint"""
        map = np.zeros(len(atoms), int)
        map[ind] = 1
        n = map.sum()
        map[:] = -1
        map[ind] = range(n)
        pairs = map[self.pairs]
        self.pairs = pairs[(pairs != -1).all(1)]
        if len(self.pairs) == 0:
            raise IndexError('Constraint not part of slice')


def FixBondLength(a1, a2):
    """Fix distance between atoms with indices a1 and a2."""
    return FixBondLengths([(a1, a2)])



class FixedMode(FixConstraint):
    """Constrain atoms to move along directions orthogonal to
    a given mode only."""

    def __init__(self, mode):
        self.mode = (np.asarray(mode) / np.sqrt((mode**2).sum())).reshape(-1)

    def adjust_positions(self, atoms, newpositions):
        newpositions = newpositions.ravel()
        oldpositions = atoms.positions.ravel()
        step = newpositions - oldpositions
        newpositions -= self.mode * np.dot(step, self.mode)

    def adjust_forces(self, atoms, forces):
        forces = forces.ravel()
        forces -= self.mode * np.dot(forces, self.mode)

    def index_shuffle(self, atoms, ind):
        eps = 1e-12
        mode = self.mode.reshape(-1, 3)
        excluded = np.ones(len(mode), dtype=bool)
        excluded[ind] = False
        if (abs(mode[excluded]) > eps).any():
            raise IndexError('All nonzero parts of mode not in slice')
        self.mode = mode[ind].ravel()

    def get_indices(self):
        # This function will never properly work because it works on all
        # atoms and it has no idea how to tell how many atoms it is
        # attached to.  If it is being used, surely the user knows
        # everything is being constrained.
        return []

    def todict(self):
        return {'name': 'FixedMode',
                'kwargs': {'mode': self.mode}}

    def __repr__(self):
        return 'FixedMode(%s)' % self.mode.tolist()


class FixedPlane(FixConstraintSingle):
    """Constrain an atom index *a* to move in a given plane only.

    The plane is defined by its normal vector *direction*."""

    removed_dof = 1

    def __init__(self, a, direction):
        self.a = a
        self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction))

    def adjust_positions(self, atoms, newpositions):
        step = newpositions[self.a] - atoms.positions[self.a]
        newpositions[self.a] -= self.dir * np.dot(step, self.dir)

    def adjust_forces(self, atoms, forces):
        forces[self.a] -= self.dir * np.dot(forces[self.a], self.dir)

    def todict(self):
        return {'name': 'FixedPlane',
                'kwargs': {'a': self.a, 'direction': self.dir}}

    def __repr__(self):
        return 'FixedPlane(%d, %s)' % (self.a, self.dir.tolist())


class FixedLine(FixConstraintSingle):
    """Constrain an atom index *a* to move on a given line only.

    The line is defined by its vector *direction*."""

    removed_dof = 2

    def __init__(self, a, direction):
        self.a = a
        self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction))

    def adjust_positions(self, atoms, newpositions):
        step = newpositions[self.a] - atoms.positions[self.a]
        x = np.dot(step, self.dir)
        newpositions[self.a] = atoms.positions[self.a] + x * self.dir

    def adjust_forces(self, atoms, forces):
        forces[self.a] = self.dir * np.dot(forces[self.a], self.dir)

    def __repr__(self):
        return 'FixedLine(%d, %s)' % (self.a, self.dir.tolist())

    def todict(self):
        return {'name': 'FixedLine',
                'kwargs': {'a': self.a, 'direction': self.dir}}


class FixCartesian(FixConstraintSingle):
    'Fix an atom index *a* in the directions of the cartesian coordinates.'

    def __init__(self, a, mask=(1, 1, 1)):
        self.a = a
        self.mask = ~np.asarray(mask, bool)
        self.removed_dof = 3 - self.mask.sum()

    def adjust_positions(self, atoms, new):
        step = new[self.a] - atoms.positions[self.a]
        step *= self.mask
        new[self.a] = atoms.positions[self.a] + step

    def adjust_forces(self, atoms, forces):
        forces[self.a] *= self.mask

    def __repr__(self):
        return 'FixCartesian(a={0}, mask={1})'.format(self.a,
                                                      list(~self.mask))

    def todict(self):
        return {'name': 'FixCartesian',
                'kwargs': {'a': self.a, 'mask': ~self.mask}}


class FixScaled(FixConstraintSingle):
    'Fix an atom index *a* in the directions of the unit vectors.'

    def __init__(self, cell, a, mask=(1, 1, 1)):
        self.cell = np.asarray(cell)
        self.a = a
        self.mask = np.array(mask, bool)
        self.removed_dof = self.mask.sum()

    def adjust_positions(self, atoms, new):
        scaled_old = np.linalg.solve(self.cell.T, atoms.positions.T).T
        scaled_new = np.linalg.solve(self.cell.T, new.T).T
        for n in range(3):
            if self.mask[n]:
                scaled_new[self.a, n] = scaled_old[self.a, n]
        new[self.a] = np.dot(scaled_new, self.cell)[self.a]

    def adjust_forces(self, atoms, forces):
        scaled_forces = np.linalg.solve(self.cell.T, forces.T).T
        scaled_forces[self.a] *= -(self.mask - 1)
        forces[self.a] = np.dot(scaled_forces, self.cell)[self.a]

    def todict(self):
        return {'name': 'FixScaled',
                'kwargs': {'a': self.a,
                           'cell': self.cell,
                           'mask': self.mask}}

    def __repr__(self):
        return 'FixScaled(%s, %d, %s)' % (repr(self.cell),
                                          self.a,
                                          repr(self.mask))


# TODO: Better interface might be to use dictionaries in place of very
# nested lists/tuples
class FixInternals(FixConstraint):
    """Constraint object for fixing multiple internal coordinates.

    Allows fixing bonds, angles, and dihedrals."""

    def __init__(self, bonds=None, angles=None, dihedrals=None,
                 epsilon=1.e-7):
        self.bonds = bonds or []
        self.angles = angles or []
        self.dihedrals = dihedrals or []

        # Initialize these at run-time:
        self.n = 0
        self.constraints = []
        self.epsilon = epsilon

        self.initialized = False
        self.removed_dof = (len(self.bonds) +
                            len(self.angles) +
                            len(self.dihedrals))

    def initialize(self, atoms):
        if self.initialized:
            return
        masses = atoms.get_masses()
        self.n = len(self.bonds) + len(self.angles) + len(self.dihedrals)
        self.constraints = []
        for bond in self.bonds:
            masses_bond = masses.take(bond[1])
            self.constraints.append(self.FixBondLengthAlt(bond[0], bond[1],
                                                          masses_bond))
        for angle in self.angles:
            masses_angle = masses.take(angle[1])
            self.constraints.append(self.FixAngle(angle[0], angle[1],
                                                  masses_angle))
        for dihedral in self.dihedrals:
            masses_dihedral = masses.take(dihedral[1])
            self.constraints.append(self.FixDihedral(dihedral[0],
                                                     dihedral[1],
                                                     masses_dihedral))
        self.initialized = True

    def get_indices(self):
        cons = self.bonds + self.dihedrals + self.angles
        return np.unique(np.ravel([constraint[1]
                                   for constraint in cons]))

    def todict(self):
        return {'name': 'FixInternals',
                'kwargs': {'bonds': self.bonds,
                           'angles': self.angles,
                           'dihedrals': self.dihedrals,
                           'epsilon': self.epsilon}}

    def adjust_positions(self, atoms, new):
        self.initialize(atoms)
        for constraint in self.constraints:
            constraint.set_h_vectors(atoms.positions)
        for j in range(50):
            maxerr = 0.0
            for constraint in self.constraints:
                constraint.adjust_positions(atoms.positions, new)
                maxerr = max(abs(constraint.sigma), maxerr)
            if maxerr < self.epsilon:
                return
        raise ValueError('Shake did not converge.')

    def adjust_forces(self, atoms, forces):
        """Project out translations and rotations and all other constraints"""
        self.initialize(atoms)
        positions = atoms.positions
        N = len(forces)
        list2_constraints = list(np.zeros((6, N, 3)))
        tx, ty, tz, rx, ry, rz = list2_constraints

        list_constraints = [r.ravel() for r in list2_constraints]

        tx[:, 0] = 1.0
        ty[:, 1] = 1.0
        tz[:, 2] = 1.0
        ff = forces.ravel()

        # Calculate the center of mass
        center = positions.sum(axis=0) / N

        rx[:, 1] = -(positions[:, 2] - center[2])
        rx[:, 2] = positions[:, 1] - center[1]
        ry[:, 0] = positions[:, 2] - center[2]
        ry[:, 2] = -(positions[:, 0] - center[0])
        rz[:, 0] = -(positions[:, 1] - center[1])
        rz[:, 1] = positions[:, 0] - center[0]

        # Normalizing transl., rotat. constraints
        for r in list2_constraints:
            r /= np.linalg.norm(r.ravel())

        # Add all angle, etc. constraint vectors
        for constraint in self.constraints:
            constraint.adjust_forces(positions, forces)
            list_constraints.insert(0, constraint.h)
        # QR DECOMPOSITION - GRAM SCHMIDT

        list_constraints = [r.ravel() for r in list_constraints]
        aa = np.column_stack(list_constraints)
        (aa, bb) = np.linalg.qr(aa)
        # Projection
        hh = []
        for i, constraint in enumerate(self.constraints):
            hh.append(aa[:, i] * np.row_stack(aa[:, i]))

        txx = aa[:, self.n] * np.row_stack(aa[:, self.n])
        tyy = aa[:, self.n + 1] * np.row_stack(aa[:, self.n + 1])
        tzz = aa[:, self.n + 2] * np.row_stack(aa[:, self.n + 2])
        rxx = aa[:, self.n + 3] * np.row_stack(aa[:, self.n + 3])
        ryy = aa[:, self.n + 4] * np.row_stack(aa[:, self.n + 4])
        rzz = aa[:, self.n + 5] * np.row_stack(aa[:, self.n + 5])
        T = txx + tyy + tzz + rxx + ryy + rzz
        for vec in hh:
            T += vec
        ff = np.dot(T, np.row_stack(ff))
        forces[:, :] -= np.dot(T, np.row_stack(ff)).reshape(-1, 3)

    def __repr__(self):
        constraints = repr(self.constraints)
        return 'FixInternals(_copy_init=%s, epsilon=%s)' % (constraints,
                                                            repr(self.epsilon))

    def __str__(self):
        return '\n'.join([repr(c) for c in self.constraints])

    # Classes for internal use in FixInternals
    class FixBondLengthAlt:
        """Constraint subobject for fixing bond length within FixInternals."""

        def __init__(self, bond, indices, masses, maxstep=0.01):
            """Fix distance between atoms with indices a1, a2."""
            self.indices = indices
            self.bond = bond
            self.h1 = None
            self.h2 = None
            self.masses = masses
            self.h = []
            self.sigma = 1.

        def set_h_vectors(self, pos):
            dist1 = pos[self.indices[0]] - pos[self.indices[1]]
            self.h1 = 2 * dist1
            self.h2 = -self.h1

        def adjust_positions(self, old, new):
            h1 = self.h1 / self.masses[0]
            h2 = self.h2 / self.masses[1]
            dist1 = new[self.indices[0]] - new[self.indices[1]]
            dist = np.dot(dist1, dist1)
            self.sigma = dist - self.bond**2
            lamda = -self.sigma / (2 * np.dot(dist1, (h1 - h2)))
            new[self.indices[0]] += lamda * h1
            new[self.indices[1]] += lamda * h2

        def adjust_forces(self, positions, forces):
            self.h1 = 2 * (positions[self.indices[0]] -
                           positions[self.indices[1]])
            self.h2 = -self.h1
            self.h = np.zeros([len(forces) * 3])
            self.h[(self.indices[0]) * 3] = self.h1[0]
            self.h[(self.indices[0]) * 3 + 1] = self.h1[1]
            self.h[(self.indices[0]) * 3 + 2] = self.h1[2]
            self.h[(self.indices[1]) * 3] = self.h2[0]
            self.h[(self.indices[1]) * 3 + 1] = self.h2[1]
            self.h[(self.indices[1]) * 3 + 2] = self.h2[2]
            self.h /= np.linalg.norm(self.h)

        def __repr__(self):
            return 'FixBondLengthAlt(%s, %d, %d)' % \
                (repr(self.bond), self.indices[0], self.indices[1])

    class FixAngle:
        """Constraint object for fixing an angle within
        FixInternals."""

        def __init__(self, angle, indices, masses):
            """Fix atom movement to construct a constant angle."""
            self.indices = indices
            self.a1m, self.a2m, self.a3m = masses
            self.angle = np.cos(angle)
            self.h1 = self.h2 = self.h3 = None
            self.h = []
            self.sigma = 1.

        def set_h_vectors(self, pos):
            r21 = pos[self.indices[0]] - pos[self.indices[1]]
            r21_len = np.linalg.norm(r21)
            e21 = r21 / r21_len
            r23 = pos[self.indices[2]] - pos[self.indices[1]]
            r23_len = np.linalg.norm(r23)
            e23 = r23 / r23_len
            angle = np.dot(e21, e23)
            self.h1 = -2 * angle * ((angle * e21 - e23) / (r21_len))
            self.h3 = -2 * angle * ((angle * e23 - e21) / (r23_len))
            self.h2 = -(self.h1 + self.h3)

        def adjust_positions(self, oldpositions, newpositions):
            r21 = newpositions[self.indices[0]] - newpositions[self.indices[1]]
            r21_len = np.linalg.norm(r21)
            e21 = r21 / r21_len
            r23 = newpositions[self.indices[2]] - newpositions[self.indices[1]]
            r23_len = np.linalg.norm(r23)
            e23 = r23 / r23_len
            angle = np.dot(e21, e23)
            self.sigma = (angle - self.angle) * (angle + self.angle)
            h1 = self.h1 / self.a1m
            h3 = self.h3 / self.a3m
            h2 = self.h2 / self.a2m
            h21 = h1 - h2
            h23 = h3 - h2
            # Calculating new positions
            deriv = (((np.dot(r21, h23) + np.dot(r23, h21)) /
                      (r21_len * r23_len)) -
                     (np.dot(r21, h21) / (r21_len * r21_len) +
                      np.dot(r23, h23) / (r23_len * r23_len)) * angle)
            deriv *= 2 * angle
            lamda = -self.sigma / deriv
            newpositions[self.indices[0]] += lamda * h1
            newpositions[self.indices[1]] += lamda * h2
            newpositions[self.indices[2]] += lamda * h3

        def adjust_forces(self, positions, forces):
            r21 = positions[self.indices[0]] - positions[self.indices[1]]
            r21_len = np.linalg.norm(r21)
            e21 = r21 / r21_len
            r23 = positions[self.indices[2]] - positions[self.indices[1]]
            r23_len = np.linalg.norm(r23)
            e23 = r23 / r23_len
            angle = np.dot(e21, e23)
            self.h1 = -2 * angle * (angle * e21 - e23) / r21_len
            self.h3 = -2 * angle * (angle * e23 - e21) / r23_len
            self.h2 = -(self.h1 + self.h3)
            self.h = np.zeros([len(positions) * 3])
            self.h[(self.indices[0]) * 3] = self.h1[0]
            self.h[(self.indices[0]) * 3 + 1] = self.h1[1]
            self.h[(self.indices[0]) * 3 + 2] = self.h1[2]
            self.h[(self.indices[1]) * 3] = self.h2[0]
            self.h[(self.indices[1]) * 3 + 1] = self.h2[1]
            self.h[(self.indices[1]) * 3 + 2] = self.h2[2]
            self.h[(self.indices[2]) * 3] = self.h3[0]
            self.h[(self.indices[2]) * 3 + 1] = self.h3[1]
            self.h[(self.indices[2]) * 3 + 2] = self.h3[2]
            self.h /= np.linalg.norm(self.h)

        def __repr__(self):
            return 'FixAngle(%s, %f)' % (tuple(self.indices),
                                         np.arccos(self.angle))

    class FixDihedral:
        """Constraint object for fixing an dihedral using
        the shake algorithm. This one allows also other constraints."""

        def __init__(self, angle, indices, masses):
            """Fix atom movement to construct a constant dihedral angle."""
            self.indices = indices
            self.a1m, self.a2m, self.a3m, self.a4m = masses
            self.angle = np.cos(angle)
            self.h1 = self.h2 = self.h3 = self.h4 = None
            self.h = []
            self.sigma = 1.

        def set_h_vectors(self, pos):
            r12 = pos[self.indices[1]] - pos[self.indices[0]]
            r23 = pos[self.indices[2]] - pos[self.indices[1]]
            r23_len = np.linalg.norm(r23)
            e23 = r23 / r23_len
            r34 = pos[self.indices[3]] - pos[self.indices[2]]
            a = -r12 - np.dot(-r12, e23) * e23
            a_len = np.linalg.norm(a)
            ea = a / a_len
            b = r34 - np.dot(r34, e23) * e23
            b_len = np.linalg.norm(b)
            eb = b / b_len
            angle = np.dot(ea, eb).clip(-1.0, 1.0)
            self.h1 = (eb - angle * ea) / a_len
            self.h4 = (ea - angle * eb) / b_len
            self.h2 = self.h1 * (np.dot(-r12, e23) / r23_len - 1)
            self.h2 += np.dot(r34, e23) / r23_len * self.h4
            self.h3 = -self.h4 * (np.dot(r34, e23) / r23_len + 1)
            self.h3 += np.dot(r12, e23) / r23_len * self.h1

        def adjust_positions(self, oldpositions, newpositions):
            r12 = newpositions[self.indices[1]] - newpositions[self.indices[0]]
            r23 = newpositions[self.indices[2]] - newpositions[self.indices[1]]
            r34 = newpositions[self.indices[3]] - newpositions[self.indices[2]]
            n1 = np.cross(r12, r23)
            n1_len = np.linalg.norm(n1)
            n1e = n1 / n1_len
            n2 = np.cross(r23, r34)
            n2_len = np.linalg.norm(n2)
            n2e = n2 / n2_len
            angle = np.dot(n1e, n2e).clip(-1.0, 1.0)
            self.sigma = (angle - self.angle) * (angle + self.angle)
            h1 = self.h1 / self.a1m
            h2 = self.h2 / self.a2m
            h3 = self.h3 / self.a3m
            h4 = self.h4 / self.a4m
            h12 = h2 - h1
            h23 = h3 - h2
            h34 = h4 - h3
            deriv = ((np.dot(n1, np.cross(r34, h23) + np.cross(h34, r23)) +
                      np.dot(n2, np.cross(r23, h12) + np.cross(h23, r12))) /
                     (n1_len * n2_len))
            deriv -= (((np.dot(n1, np.cross(r23, h12) + np.cross(h23, r12)) /
                        n1_len**2) +
                       (np.dot(n2, np.cross(r34, h23) + np.cross(h34, r23)) /
                        n2_len**2)) * angle)
            deriv *= -2 * angle
            lamda = -self.sigma / deriv
            newpositions[self.indices[0]] += lamda * h1
            newpositions[self.indices[1]] += lamda * h2
            newpositions[self.indices[2]] += lamda * h3
            newpositions[self.indices[3]] += lamda * h4

        def adjust_forces(self, positions, forces):
            r12 = positions[self.indices[1]] - positions[self.indices[0]]
            r23 = positions[self.indices[2]] - positions[self.indices[1]]
            r23_len = np.linalg.norm(r23)
            e23 = r23 / r23_len
            r34 = positions[self.indices[3]] - positions[self.indices[2]]
            a = -r12 - np.dot(-r12, e23) * e23
            a_len = np.linalg.norm(a)
            ea = a / a_len
            b = r34 - np.dot(r34, e23) * e23
            b_len = np.linalg.norm(b)
            eb = b / b_len
            angle = np.dot(ea, eb).clip(-1.0, 1.0)
            self.h1 = (eb - angle * ea) / a_len
            self.h4 = (ea - angle * eb) / b_len
            self.h2 = self.h1 * (np.dot(-r12, e23) / r23_len - 1)
            self.h2 += np.dot(r34, e23) / r23_len * self.h4
            self.h3 = -self.h4 * (np.dot(r34, e23) / r23_len + 1)
            self.h3 -= np.dot(-r12, e23) / r23_len * self.h1

            self.h = np.zeros([len(positions) * 3])
            self.h[(self.indices[0]) * 3] = self.h1[0]
            self.h[(self.indices[0]) * 3 + 1] = self.h1[1]
            self.h[(self.indices[0]) * 3 + 2] = self.h1[2]
            self.h[(self.indices[1]) * 3] = self.h2[0]
            self.h[(self.indices[1]) * 3 + 1] = self.h2[1]
            self.h[(self.indices[1]) * 3 + 2] = self.h2[2]
            self.h[(self.indices[2]) * 3] = self.h3[0]
            self.h[(self.indices[2]) * 3 + 1] = self.h3[1]
            self.h[(self.indices[2]) * 3 + 2] = self.h3[2]
            self.h[(self.indices[3]) * 3] = self.h4[0]
            self.h[(self.indices[3]) * 3 + 1] = self.h4[1]
            self.h[(self.indices[3]) * 3 + 2] = self.h4[2]
            self.h /= np.linalg.norm(self.h)

        def __repr__(self):
            return 'FixDihedral(%s, %f)' % (tuple(self.indices), self.angle)


class Hookean(FixConstraint):
    """Applies a Hookean restorative force between a pair of atoms, an atom
    and a point, or an atom and a plane."""

    def __init__(self, a1, a2, k, rt=None):
        """Forces two atoms to stay close together by applying no force if
        they are below a threshold length, rt, and applying a Hookean
        restorative force when the distance between them exceeds rt. Can
        also be used to tether an atom to a fixed point in space or to a
        distance above a plane.

        a1 : int
           Index of atom 1
        a2 : one of three options
           1) index of atom 2
           2) a fixed point in cartesian space to which to tether a1
           3) a plane given as (A, B, C, D) in A x + B y + C z + D = 0.
        k : float
           Hooke's law (spring) constant to apply when distance
           exceeds threshold_length. Units of eV A^-2.
        rt : float
           The threshold length below which there is no force. The
           length is 1) between two atoms, 2) between atom and point.
           This argument is not supplied in case 3. Units of A.

        If a plane is specified, the Hooke's law force is applied if the atom
        is on the normal side of the plane. For instance, the plane with
        (A, B, C, D) = (0, 0, 1, -7) defines a plane in the xy plane with a z
        intercept of +7 and a normal vector pointing in the +z direction.
        If the atom has z > 7, then a downward force would be applied of
        k * (atom.z - 7). The same plane with the normal vector pointing in
        the -z direction would be given by (A, B, C, D) = (0, 0, -1, 7).
        """

        if isinstance(a2, int):
            self._type = 'two atoms'
            self.indices = [a1, a2]
        elif len(a2) == 3:
            self._type = 'point'
            self.index = a1
            self.origin = np.array(a2)
        elif len(a2) == 4:
            self._type = 'plane'
            self.index = a1
            self.plane = a2
        else:
            raise RuntimeError('Unknown type for a2')
        self.threshold = rt
        self.spring = k

    def todict(self):
        dct = {'name': 'Hookean'}
        dct['kwargs'] = {'rt': self.threshold,
                         'k': self.spring}
        if self._type == 'two atoms':
            dct['kwargs']['a1'] = self.indices[0]
            dct['kwargs']['a2'] = self.indices[1]
        elif self._type == 'point':
            dct['kwargs']['a1'] = self.index
            dct['kwargs']['a2'] = self.origin
        elif self._type == 'plane':
            dct['kwargs']['a1'] = self.index
            dct['kwargs']['a2'] = self.plane
        else:
            raise NotImplementedError('Bad type: %s' % self._type)
        return dct

    def adjust_positions(self, atoms, newpositions):
        pass

    def adjust_momenta(self, atoms, momenta):
        pass

    def adjust_forces(self, atoms, forces):
        positions = atoms.positions
        if self._type == 'plane':
            A, B, C, D = self.plane
            x, y, z = positions[self.index]
            d = ((A * x + B * y + C * z + D) /
                 np.sqrt(A**2 + B**2 + C**2))
            if d < 0:
                return
            magnitude = self.spring * d
            direction = - np.array((A, B, C)) / np.linalg.norm((A, B, C))
            forces[self.index] += direction * magnitude
            return
        if self._type == 'two atoms':
            p1, p2 = positions[self.indices]
        elif self._type == 'point':
            p1 = positions[self.index]
            p2 = self.origin
        displace = p2 - p1
        bondlength = np.linalg.norm(displace)
        if bondlength > self.threshold:
            magnitude = self.spring * (bondlength - self.threshold)
            direction = displace / np.linalg.norm(displace)
            if self._type == 'two atoms':
                forces[self.indices[0]] += direction * magnitude
                forces[self.indices[1]] -= direction * magnitude
            else:
                forces[self.index] += direction * magnitude

    def adjust_potential_energy(self, atoms):
        """Returns the difference to the potential energy due to an active
        constraint. (That is, the quantity returned is to be added to the
        potential energy.)"""
        positions = atoms.positions
        if self._type == 'plane':
            A, B, C, D = self.plane
            x, y, z = positions[self.index]
            d = ((A * x + B * y + C * z + D) /
                 np.sqrt(A**2 + B**2 + C**2))
            if d > 0:
                return 0.5 * self.spring * d**2
            else:
                return 0.
        if self._type == 'two atoms':
            p1, p2 = positions[self.indices]
        elif self._type == 'point':
            p1 = positions[self.index]
            p2 = self.origin
        displace = p2 - p1
        bondlength = np.linalg.norm(displace)
        if bondlength > self.threshold:
            return 0.5 * self.spring * (bondlength - self.threshold)**2
        else:
            return 0.

    def get_indices(self):
        if self._type == 'two atoms':
            return self.indices
        elif self._type == 'point':
            return self.index
        elif self._type == 'plane':
            return self.index

    def index_shuffle(self, atoms, ind):
        # See docstring of superclass
        if self._type == 'two atoms':
            self.indices = [ind.index(self.indices[0]),
                            ind.index(self.indices[1])]
        elif self._type == 'point':
            self.index = ind.index(self.index)
        elif self._type == 'plane':
            self.index = ind.index(self.index)

    def __repr__(self):
        if self._type == 'two atoms':
            return 'Hookean(%d, %d)' % tuple(self.indices)
        elif self._type == 'point':
            return 'Hookean(%d) to cartesian' % self.index
        else:
            return 'Hookean(%d) to plane' % self.index


class ExternalForce(FixConstraint):
    """Constraint object for pulling two atoms apart by an external force.

    You can combine this constraint for example with FixBondLength but make
    sure that the ExternalForce-constraint comes first in the list:

    >>> con1 = ExternalForce(atom1, atom2, f_ext)
    >>> con2 = FixBondLength(atom3, atom4)
    >>> atoms.set_constraint([con1, con2])

    see ase/test/external_force.py"""

    def __init__(self, a1, a2, f_ext):
        self.indices = [a1, a2]
        self.external_force = f_ext

    def adjust_positions(self, atoms, new):
        pass

    def adjust_forces(self, atoms, forces):
        dist = np.subtract.reduce(atoms.positions[self.indices])
        force = self.external_force * dist / np.linalg.norm(dist)
        forces[self.indices] += (force, -force)

    def adjust_potential_energy(self, atoms):
        dist = np.subtract.reduce(atoms.positions[self.indices])
        return -np.linalg.norm(dist) * self.external_force

    def index_shuffle(self, atoms, ind):
        """Shuffle the indices of the two atoms in this constraint"""
        newa = [-1, -1]  # Signal error
        for new, old in slice2enlist(ind, len(atoms)):
            for i, a in enumerate(self.indices):
                if old == a:
                    newa[i] = new
        if newa[0] == -1 or newa[1] == -1:
            raise IndexError('Constraint not part of slice')
        self.indices = newa

    def __repr__(self):
        return 'ExternalForce(%d, %d, %f)' % (self.indices[0],
                                              self.indices[1],
                                              self.external_force)

    def todict(self):
        return {'name': 'ExternalForce',
                'kwargs': {'a1': self.indices[0], 'a2': self.indices[1],
                           'f_ext': self.external_force}}


class Filter:
    """Subset filter class."""

    def __init__(self, atoms, indices=None, mask=None):
        """Filter atoms.

        This filter can be used to hide degrees of freedom in an Atoms
        object.

        Parameters
        ----------
        indices : list of int
           Indices for those atoms that should remain visible.
        mask : list of bool
           One boolean per atom indicating if the atom should remain
           visible or not.

        If a Trajectory tries to save this object, it will instead
        save the underlying Atoms object.  To prevent this, delete
        the atoms_for_saving attribute.
        """

        self.atoms = atoms
        self.constraints = []
        # Make self.info a reference to the underlying atoms' info dictionary.
        self.info = self.atoms.info

        if indices is None and mask is None:
            raise ValueError('Use "indices" or "mask".')
        if indices is not None and mask is not None:
            raise ValueError('Use only one of "indices" and "mask".')

        if mask is not None:
            self.index = np.asarray(mask, bool)
            self.n = self.index.sum()
        else:
            self.index = np.asarray(indices, int)
            self.n = len(self.index)

        # Present the real atoms object to Trajectory and friends
        self.atoms_for_saving = self.atoms

    def get_cell(self):
        """Returns the computational cell.

        The computational cell is the same as for the original system.
        """
        return self.atoms.get_cell()

    def get_pbc(self):
        """Returns the periodic boundary conditions.

        The boundary conditions are the same as for the original system.
        """
        return self.atoms.get_pbc()

    def get_positions(self):
        'Return the positions of the visible atoms.'
        return self.atoms.get_positions()[self.index]

    def set_positions(self, positions):
        'Set the positions of the visible atoms.'
        pos = self.atoms.get_positions()
        pos[self.index] = positions
        self.atoms.set_positions(pos)

    positions = property(get_positions, set_positions,
                         doc='Positions of the atoms')

    def get_momenta(self):
        'Return the momenta of the visible atoms.'
        return self.atoms.get_momenta()[self.index]

    def set_momenta(self, momenta, **kwargs):
        'Set the momenta of the visible atoms.'
        mom = self.atoms.get_momenta()
        mom[self.index] = momenta
        self.atoms.set_momenta(mom, **kwargs)

    def get_atomic_numbers(self):
        'Return the atomic numbers of the visible atoms.'
        return self.atoms.get_atomic_numbers()[self.index]

    def set_atomic_numbers(self, atomic_numbers):
        'Set the atomic numbers of the visible atoms.'
        z = self.atoms.get_atomic_numbers()
        z[self.index] = atomic_numbers
        self.atoms.set_atomic_numbers(z)

    def get_tags(self):
        'Return the tags of the visible atoms.'
        return self.atoms.get_tags()[self.index]

    def set_tags(self, tags):
        'Set the tags of the visible atoms.'
        tg = self.atoms.get_tags()
        tg[self.index] = tags
        self.atoms.set_tags(tg)

    def get_forces(self, *args, **kwargs):
        return self.atoms.get_forces(*args, **kwargs)[self.index]

    def get_stress(self):
        return self.atoms.get_stress()

    def get_stresses(self):
        return self.atoms.get_stresses()[self.index]

    def get_masses(self):
        return self.atoms.get_masses()[self.index]

    def get_potential_energy(self, **kwargs):
        """Calculate potential energy.

        Returns the potential energy of the full system.
        """
        return self.atoms.get_potential_energy(**kwargs)

    def get_chemical_symbols(self):
        return self.atoms.get_chemical_symbols()

    def get_initial_magnetic_moments(self):
        return self.atoms.get_initial_magnetic_moments()

    def get_calculator(self):
        """Returns the calculator.

        WARNING: The calculator is unaware of this filter, and sees a
        different number of atoms.
        """
        return self.atoms.get_calculator()

    def get_celldisp(self):
        return self.atoms.get_celldisp()

    def has(self, name):
        'Check for existence of array.'
        return self.atoms.has(name)

    def __len__(self):
        'Return the number of movable atoms.'
        return self.n

    def __getitem__(self, i):
        'Return an atom.'
        return self.atoms[self.index[i]]


class StrainFilter(Filter):
    """Modify the supercell while keeping the scaled positions fixed.

    Presents the strain of the supercell as the generalized positions,
    and the global stress tensor (times the volume) as the generalized
    force.

    This filter can be used to relax the unit cell until the stress is
    zero.  If MDMin is used for this, the timestep (dt) to be used
    depends on the system size. 0.01/x where x is a typical dimension
    seems like a good choice.

    The stress and strain are presented as 6-vectors, the order of the
    components follow the standard engingeering practice: xx, yy, zz,
    yz, xz, xy.

    """

    def __init__(self, atoms, mask=None):
        """Create a filter applying a homogeneous strain to a list of atoms.

        The first argument, atoms, is the atoms object.

        The optional second argument, mask, is a list of six booleans,
        indicating which of the six independent components of the
        strain that are allowed to become non-zero.  It defaults to
        [1,1,1,1,1,1].

        """

        self.atoms = atoms
        self.strain = np.zeros(6)

        if mask is None:
            self.mask = np.ones(6)
        else:
            self.mask = np.array(mask)

        self.index = np.arange(len(atoms))
        self.n = self.index.sum()

        self.origcell = atoms.get_cell()

    def get_positions(self):
        return self.strain.reshape((2, 3)).copy()

    def set_positions(self, new):
        new = new.ravel() * self.mask
        eps = np.array([[1.0 + new[0], 0.5 * new[5], 0.5 * new[4]],
                        [0.5 * new[5], 1.0 + new[1], 0.5 * new[3]],
                        [0.5 * new[4], 0.5 * new[3], 1.0 + new[2]]])

        self.atoms.set_cell(np.dot(self.origcell, eps), scale_atoms=True)
        self.strain[:] = new

    def get_forces(self):
        stress = self.atoms.get_stress()
        return -self.atoms.get_volume() * (stress * self.mask).reshape((2, 3))

    def get_potential_energy(self):
        return self.atoms.get_potential_energy()

    def has(self, x):
        return self.atoms.has(x)

    def __len__(self):
        return 2


# The indices of the full stiffness matrix of (orthorhombic) interest
voigt_notation = [(0, 0), (1, 1), (2, 2), (1, 2), (0, 2), (0, 1)]


def full_3x3_to_voigt_6_index(i, j):
    if i == j:
        return i
    return 6 - i - j


def voigt_6_to_full_3x3_strain(strain_vector):
    """
    Form a 3x3 strain matrix from a 6 component vector in Voigt notation
    """
    e1, e2, e3, e4, e5, e6 = np.transpose(strain_vector)
    return np.transpose([[1.0 + e1, 0.5 * e6, 0.5 * e5],
                         [0.5 * e6, 1.0 + e2, 0.5 * e4],
                         [0.5 * e5, 0.5 * e4, 1.0 + e3]])


def voigt_6_to_full_3x3_stress(stress_vector):
    """
    Form a 3x3 stress matrix from a 6 component vector in Voigt notation
    """
    s1, s2, s3, s4, s5, s6 = np.transpose(stress_vector)
    return np.transpose([[s1, s6, s5],
                         [s6, s2, s4],
                         [s5, s4, s3]])


def full_3x3_to_voigt_6_strain(strain_matrix):
    """
    Form a 6 component strain vector in Voigt notation from a 3x3 matrix
    """
    strain_matrix = np.asarray(strain_matrix)
    return np.transpose([strain_matrix[..., 0, 0] - 1.0,
                         strain_matrix[..., 1, 1] - 1.0,
                         strain_matrix[..., 2, 2] - 1.0,
                         strain_matrix[..., 1, 2] + strain_matrix[..., 2, 1],
                         strain_matrix[..., 0, 2] + strain_matrix[..., 2, 0],
                         strain_matrix[..., 0, 1] + strain_matrix[..., 1, 0]])


def full_3x3_to_voigt_6_stress(stress_matrix):
    """
    Form a 6 component stress vector in Voigt notation from a 3x3 matrix
    """
    stress_matrix = np.asarray(stress_matrix)
    return np.transpose([stress_matrix[..., 0, 0],
                         stress_matrix[..., 1, 1],
                         stress_matrix[..., 2, 2],
                         (stress_matrix[..., 1, 2] +
                          stress_matrix[..., 1, 2]) / 2,
                         (stress_matrix[..., 0, 2] +
                          stress_matrix[..., 0, 2]) / 2,
                         (stress_matrix[..., 0, 1] +
                          stress_matrix[..., 0, 1]) / 2])


class UnitCellFilter(Filter):
    """Modify the supercell and the atom positions. """
    def __init__(self, atoms, mask=None,
                 cell_factor=None,
                 hydrostatic_strain=False,
                 constant_volume=False):
        """Create a filter that returns the atomic forces and unit cell
        stresses together, so they can simultaneously be minimized.

        The first argument, atoms, is the atoms object. The optional second
        argument, mask, is a list of booleans, indicating which of the six
        independent components of the strain are relaxed.

        - True = relax to zero
        - False = fixed, ignore this component

        Degrees of freedom are the positions in the original undeformed cell,
        plus the deformation tensor (extra 3 "atoms"). This gives forces
        consistent with numerical derivatives of the potential energy
        with respect to the cell degreees of freedom.

        For full details see:
            E. B. Tadmor, G. S. Smith, N. Bernstein, and E. Kaxiras,
            Phys. Rev. B 59, 235 (1999)

        You can still use constraints on the atoms, e.g. FixAtoms, to control
        the relaxation of the atoms.

        >>> # this should be equivalent to the StrainFilter
        >>> atoms = Atoms(...)
        >>> atoms.set_constraint(FixAtoms(mask=[True for atom in atoms]))
        >>> ucf = UnitCellFilter(atoms)

        You should not attach this UnitCellFilter object to a
        trajectory. Instead, create a trajectory for the atoms, and
        attach it to an optimizer like this:

        >>> atoms = Atoms(...)
        >>> ucf = UnitCellFilter(atoms)
        >>> qn = QuasiNewton(ucf)
        >>> traj = Trajectory('TiO2.traj', 'w', atoms)
        >>> qn.attach(traj)
        >>> qn.run(fmax=0.05)

        Helpful conversion table:

        - 0.05 eV/A^3   = 8 GPA
        - 0.003 eV/A^3  = 0.48 GPa
        - 0.0006 eV/A^3 = 0.096 GPa
        - 0.0003 eV/A^3 = 0.048 GPa
        - 0.0001 eV/A^3 = 0.02 GPa

        Additional optional arguments:

        cell_factor: float (default float(len(atoms)))
            Factor by which deformation gradient is multiplied to put
            it on the same scale as the positions when assembling
            the combined position/cell vector. The stress contribution to
            the forces is scaled down by the same factor. This can be thought
            of as a very simple preconditioners. Default is number of atoms
            which gives approximately the correct scaling.

        hydrostatic_strain: bool (default False)
            Constrain the cell by only allowing hydrostatic deformation.
            The virial tensor is replaced by np.diag([np.trace(virial)]*3).

        constant_volume: bool (default False)
            Project out the diagonal elements of the virial tensor to allow
            relaxations at constant volume, e.g. for mapping out an
            energy-volume curve. Note: this only approximately conserves
            the volume and breaks energy/force consistency so can only be
            used with optimizers that do require do a line minimisation
            (e.g. FIRE).
        """

        Filter.__init__(self, atoms, indices=range(len(atoms)))
        self.atoms = atoms
        self.deform_grad = np.eye(3)
        self.atom_positions = atoms.get_positions()
        self.orig_cell = atoms.get_cell()
        self.stress = None

        if mask is None:
            mask = np.ones(6)
        mask = np.asarray(mask)
        if mask.shape == (6,):
            self.mask = voigt_6_to_full_3x3_stress(mask)
        elif mask.shape == (3, 3):
            self.mask = mask
        else:
            raise ValueError('shape of mask should be (3,3) or (6,)')

        if cell_factor is None:
            cell_factor = float(len(atoms))
        self.hydrostatic_strain = hydrostatic_strain
        self.constant_volume = constant_volume
        self.cell_factor = cell_factor
        self.copy = self.atoms.copy
        self.arrays = self.atoms.arrays

    def get_positions(self):
        '''
        this returns an array with shape (natoms + 3,3).

        the first natoms rows are the positions of the atoms, the last
        three rows are the deformation tensor associated with the unit cell,
        scaled by self.cell_factor.
        '''

        natoms = len(self.atoms)
        pos = np.zeros((natoms + 3, 3))
        pos[:natoms] = self.atom_positions
        pos[natoms:] = self.cell_factor * self.deform_grad
        return pos

    def set_positions(self, new):
        '''
        new is an array with shape (natoms+3,3).

        the first natoms rows are the positions of the atoms, the last
        three rows are the deformation tensor used to change the cell shape.

        the positions are first set with respect to the original
        undeformed cell, and then the cell is transformed by the
        current deformation gradient.
        '''

        natoms = len(self.atoms)
        self.atom_positions[:] = new[:natoms]
        self.deform_grad = new[natoms:] / self.cell_factor
        self.atoms.set_positions(self.atom_positions)
        self.atoms.set_cell(self.orig_cell, scale_atoms=False)
        self.atoms.set_cell(np.dot(self.orig_cell, self.deform_grad.T),
                            scale_atoms=True)

    def get_forces(self, apply_constraint=False):
        '''
        returns an array with shape (natoms+2,3) of the atomic forces
        and unit cell stresses.

        the first natoms rows are the forces on the atoms, the last
        three rows are the forces on the unit cell, which are
        computed from the stress tensor.
        '''

        atoms_forces = self.atoms.get_forces()
        stress = self.atoms.get_stress()
        self.stress = voigt_6_to_full_3x3_stress(stress) * self.mask

        volume = self.atoms.get_volume()
        virial = -volume * voigt_6_to_full_3x3_stress(stress)
        atoms_forces = np.dot(atoms_forces, self.deform_grad)
        dg_inv = np.linalg.inv(self.deform_grad)
        virial = np.dot(virial, dg_inv.T)

        if self.hydrostatic_strain:
            vtr = virial.trace()
            virial = np.diag([vtr / 3.0, vtr / 3.0, vtr / 3.0])

        # Zero out components corresponding to fixed lattice elements
        if (self.mask != 1.0).any():
            virial *= self.mask

        if self.constant_volume:
            vtr = virial.trace()
            np.fill_diagonal(virial, np.diag(virial) - vtr / 3.0)

        natoms = len(self.atoms)
        forces = np.zeros((natoms + 3, 3))
        forces[:natoms] = atoms_forces
        forces[natoms:] = virial / self.cell_factor
        return forces

    def get_potential_energy(self):
        return self.atoms.get_potential_energy()

    def get_stress(self):
        raise NotImplementedError

    def has(self, x):
        return self.atoms.has(x)

    def __len__(self):
        return (len(self.atoms) + 3)