1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
from __future__ import division
import re
import warnings
from math import sin, cos, pi
import numpy as np
from ase.geometry import cell_to_cellpar, crystal_structure_from_cell
def monkhorst_pack(size):
"""Construct a uniform sampling of k-space of given size."""
if np.less_equal(size, 0).any():
raise ValueError('Illegal size: %s' % list(size))
kpts = np.indices(size).transpose((1, 2, 3, 0)).reshape((-1, 3))
return (kpts + 0.5) / size - 0.5
def get_monkhorst_pack_size_and_offset(kpts):
"""Find Monkhorst-Pack size and offset.
Returns (size, offset), where::
kpts = monkhorst_pack(size) + offset.
The set of k-points must not have been symmetry reduced."""
if len(kpts) == 1:
return np.ones(3, int), np.array(kpts[0], dtype=float)
size = np.zeros(3, int)
for c in range(3):
# Determine increment between k-points along current axis
delta = max(np.diff(np.sort(kpts[:, c])))
# Determine number of k-points as inverse of distance between kpoints
if delta > 1e-8:
size[c] = int(round(1.0 / delta))
else:
size[c] = 1
if size.prod() == len(kpts):
kpts0 = monkhorst_pack(size)
offsets = kpts - kpts0
# All offsets must be identical:
if (offsets.ptp(axis=0) < 1e-9).all():
return size, offsets[0].copy()
raise ValueError('Not an ASE-style Monkhorst-Pack grid!')
def get_monkhorst_shape(kpts):
warnings.warn('Use get_monkhorst_pack_size_and_offset()[0] instead.')
return get_monkhorst_pack_size_and_offset(kpts)[0]
def kpoint_convert(cell_cv, skpts_kc=None, ckpts_kv=None):
"""Convert k-points between scaled and cartesian coordinates.
Given the atomic unit cell, and either the scaled or cartesian k-point
coordinates, the other is determined.
The k-point arrays can be either a single point, or a list of points,
i.e. the dimension k can be empty or multidimensional.
"""
if ckpts_kv is None:
icell_cv = 2 * np.pi * np.linalg.inv(cell_cv).T
return np.dot(skpts_kc, icell_cv)
elif skpts_kc is None:
return np.dot(ckpts_kv, cell_cv.T) / (2 * np.pi)
else:
raise KeyError('Either scaled or cartesian coordinates must be given.')
def parse_path_string(s):
"""Parse compact string representation of BZ path.
A path string can have several non-connected sections separated by
commas. The return value is a list of sections where each section is a
list of labels.
Examples:
>>> parse_path_string('GX')
[['G', 'X']]
>>> parse_path_string('GX,M1A')
[['G', 'X'], ['M1', 'A']]
"""
paths = []
for path in s.split(','):
names = [name if name != 'Gamma' else 'G'
for name in re.split(r'([A-Z][a-z0-9]*)', path)
if name]
paths.append(names)
return paths
def bandpath(path, cell, npoints=50):
"""Make a list of kpoints defining the path between the given points.
path: list or str
Can be:
* a string that parse_path_string() understands: 'GXL'
* a list of BZ points: [(0, 0, 0), (0.5, 0, 0)]
* or several lists of BZ points if the the path is not continuous.
cell: 3x3
Unit cell of the atoms.
npoints: int
Length of the output kpts list.
Return list of k-points, list of x-coordinates and list of
x-coordinates of special points."""
if isinstance(path, str):
xtal = crystal_structure_from_cell(cell)
special = get_special_points(xtal, cell)
paths = []
for names in parse_path_string(path):
paths.append([special[name] for name in names])
elif np.array(path[0]).ndim == 1:
paths = [path]
else:
paths = path
points = np.concatenate(paths)
dists = points[1:] - points[:-1]
lengths = [np.linalg.norm(d) for d in kpoint_convert(cell, skpts_kc=dists)]
i = 0
for path in paths[:-1]:
i += len(path)
lengths[i - 1] = 0
length = sum(lengths)
kpts = []
x0 = 0
x = []
X = [0]
for P, d, L in zip(points[:-1], dists, lengths):
n = max(2, int(round(L * (npoints - len(x)) / (length - x0))))
for t in np.linspace(0, 1, n)[:-1]:
kpts.append(P + t * d)
x.append(x0 + t * L)
x0 += L
X.append(x0)
kpts.append(points[-1])
x.append(x0)
return np.array(kpts), np.array(x), np.array(X)
get_bandpath = bandpath # old name
def labels_from_kpts(kpts, cell, crystal_structure=None, eps=1e-6):
"""Get an x-axis to be used when plotting a band structure.
The first of the returned lists can be used as a x-axis when plotting
the band structure. The second list can be used as xticks, and the third
as xticklabels.
Parameters:
kpts: list
List of scaled k-points.
cell: list
Unit cell of the atomic structure.
crystal_structure: str
Crystal structure of the atoms. If None is provided the crystal
structure is determined from the cell.
Returns:
Three arrays; the first is a list of cumulative distances between kpoints,
the second is x coordinates of the special points,
the third is the special points as strings.
"""
if crystal_structure is None:
crystal_structure = crystal_structure_from_cell(cell)
points = np.asarray(kpts)
diffs = points[1:] - points[:-1]
kinks = abs(diffs[1:] - diffs[:-1]).sum(1) > eps
N = len(points)
indices = [0]
indices.extend(np.arange(1, N - 1)[kinks])
indices.append(N - 1)
special = get_special_points(crystal_structure, cell)
labels = []
for kpt in points[indices]:
for label, k in special.items():
if abs(kpt - k).sum() < eps:
break
else:
label = '?'
labels.append(label)
xcoords = [0]
for i1, i2 in zip(indices[:-1], indices[1:]):
if i1 + 1 == i2:
length = 0
else:
diff = points[i2] - points[i1]
length = np.linalg.norm(kpoint_convert(cell, skpts_kc=diff))
xcoords.extend(np.linspace(0, length, i2 - i1 + 1)[1:] + xcoords[-1])
xcoords = np.array(xcoords)
return xcoords, xcoords[indices], labels
special_points = {
'cubic': {'G': [0, 0, 0],
'M': [1 / 2, 1 / 2, 0],
'R': [1 / 2, 1 / 2, 1 / 2],
'X': [0, 1 / 2, 0]},
'fcc': {'G': [0, 0, 0],
'K': [3 / 8, 3 / 8, 3 / 4],
'L': [1 / 2, 1 / 2, 1 / 2],
'U': [5 / 8, 1 / 4, 5 / 8],
'W': [1 / 2, 1 / 4, 3 / 4],
'X': [1 / 2, 0, 1 / 2]},
'bcc': {'G': [0, 0, 0],
'H': [1 / 2, -1 / 2, 1 / 2],
'P': [1 / 4, 1 / 4, 1 / 4],
'N': [0, 0, 1 / 2]},
'tetragonal': {'G': [0, 0, 0],
'A': [1 / 2, 1 / 2, 1 / 2],
'M': [1 / 2, 1 / 2, 0],
'R': [0, 1 / 2, 1 / 2],
'X': [0, 1 / 2, 0],
'Z': [0, 0, 1 / 2]},
'orthorhombic': {'G': [0, 0, 0],
'R': [1 / 2, 1 / 2, 1 / 2],
'S': [1 / 2, 1 / 2, 0],
'T': [0, 1 / 2, 1 / 2],
'U': [1 / 2, 0, 1 / 2],
'X': [1 / 2, 0, 0],
'Y': [0, 1 / 2, 0],
'Z': [0, 0, 1 / 2]},
'hexagonal': {'G': [0, 0, 0],
'A': [0, 0, 1 / 2],
'H': [1 / 3, 1 / 3, 1 / 2],
'K': [1 / 3, 1 / 3, 0],
'L': [1 / 2, 0, 1 / 2],
'M': [1 / 2, 0, 0]}}
special_paths = {
'cubic': 'GXMGRX,MR',
'fcc': 'GXWKGLUWLK,UX',
'bcc': 'GHNGPH,PN',
'tetragonal': 'GXMGZRAZXR,MA',
'orthorhombic': 'GXSYGZURTZ,YT,UX,SR',
'hexagonal': 'GMKGALHA,LM,KH',
'monoclinic': 'GYHCEM1AXH1,MDZ,YD'}
def get_special_points(lattice, cell, eps=1e-4):
"""Return dict of special points.
The definitions are from a paper by Wahyu Setyawana and Stefano
Curtarolo::
http://dx.doi.org/10.1016/j.commatsci.2010.05.010
lattice: str
One of the following: cubic, fcc, bcc, orthorhombic, tetragonal,
hexagonal or monoclinic.
cell: 3x3 ndarray
Unit cell.
eps: float
Tolerance for cell-check.
"""
lattice = lattice.lower()
cellpar = cell_to_cellpar(cell=cell)
abc = cellpar[:3]
angles = cellpar[3:] / 180 * pi
a, b, c = abc
alpha, beta, gamma = angles
# Check that the unit-cells are as in the Setyawana-Curtarolo paper:
if lattice == 'cubic':
assert abc.ptp() < eps and abs(angles - pi / 2).max() < eps
elif lattice == 'fcc':
assert abc.ptp() < eps and abs(angles - pi / 3).max() < eps
elif lattice == 'bcc':
angle = np.arccos(-1 / 3)
assert abc.ptp() < eps and abs(angles - angle).max() < eps
elif lattice == 'tetragonal':
assert abs(a - b) < eps and abs(angles - pi / 2).max() < eps
elif lattice == 'orthorhombic':
assert abs(angles - pi / 2).max() < eps
elif lattice == 'hexagonal':
assert abs(a - b) < eps
assert abs(gamma - pi / 3 * 2) < eps
assert abs(angles[:2] - pi / 2).max() < eps
elif lattice == 'monoclinic':
assert c >= a and c >= b
assert alpha < pi / 2 and abs(angles[1:] - pi / 2).max() < eps
if lattice != 'monoclinic':
return special_points[lattice]
# Here, we need the cell:
eta = (1 - b * cos(alpha) / c) / (2 * sin(alpha)**2)
nu = 1 / 2 - eta * c * cos(alpha) / b
return {'G': [0, 0, 0],
'A': [1 / 2, 1 / 2, 0],
'C': [0, 1 / 2, 1 / 2],
'D': [1 / 2, 0, 1 / 2],
'D1': [1 / 2, 0, -1 / 2],
'E': [1 / 2, 1 / 2, 1 / 2],
'H': [0, eta, 1 - nu],
'H1': [0, 1 - eta, nu],
'H2': [0, eta, -nu],
'M': [1 / 2, eta, 1 - nu],
'M1': [1 / 2, 1 - eta, nu],
'M2': [1 / 2, eta, -nu],
'X': [0, 1 / 2, 0],
'Y': [0, 0, 1 / 2],
'Y1': [0, 0, -1 / 2],
'Z': [1 / 2, 0, 0]}
# ChadiCohen k point grids. The k point grids are given in units of the
# reciprocal unit cell. The variables are named after the following
# convention: cc+'<Nkpoints>'+_+'shape'. For example an 18 k point
# sq(3)xsq(3) is named 'cc18_sq3xsq3'.
cc6_1x1 = np.array([
1, 1, 0, 1, 0, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0,
0, 1, 0]).reshape((6, 3)) / 3.0
cc12_2x3 = np.array([
3, 4, 0, 3, 10, 0, 6, 8, 0, 3, -2, 0, 6, -4, 0,
6, 2, 0, -3, 8, 0, -3, 2, 0, -3, -4, 0, -6, 4, 0, -6, -2, 0, -6,
-8, 0]).reshape((12, 3)) / 18.0
cc18_sq3xsq3 = np.array([
2, 2, 0, 4, 4, 0, 8, 2, 0, 4, -2, 0, 8, -4,
0, 10, -2, 0, 10, -8, 0, 8, -10, 0, 2, -10, 0, 4, -8, 0, -2, -8,
0, 2, -4, 0, -4, -4, 0, -2, -2, 0, -4, 2, 0, -2, 4, 0, -8, 4, 0,
-4, 8, 0]).reshape((18, 3)) / 18.0
cc18_1x1 = np.array([
2, 4, 0, 2, 10, 0, 4, 8, 0, 8, 4, 0, 8, 10, 0,
10, 8, 0, 2, -2, 0, 4, -4, 0, 4, 2, 0, -2, 8, 0, -2, 2, 0, -2, -4,
0, -4, 4, 0, -4, -2, 0, -4, -8, 0, -8, 2, 0, -8, -4, 0, -10, -2,
0]).reshape((18, 3)) / 18.0
cc54_sq3xsq3 = np.array([
4, -10, 0, 6, -10, 0, 0, -8, 0, 2, -8, 0, 6,
-8, 0, 8, -8, 0, -4, -6, 0, -2, -6, 0, 2, -6, 0, 4, -6, 0, 8, -6,
0, 10, -6, 0, -6, -4, 0, -2, -4, 0, 0, -4, 0, 4, -4, 0, 6, -4, 0,
10, -4, 0, -6, -2, 0, -4, -2, 0, 0, -2, 0, 2, -2, 0, 6, -2, 0, 8,
-2, 0, -8, 0, 0, -4, 0, 0, -2, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0,
-8, 2, 0, -6, 2, 0, -2, 2, 0, 0, 2, 0, 4, 2, 0, 6, 2, 0, -10, 4,
0, -6, 4, 0, -4, 4, 0, 0, 4, 0, 2, 4, 0, 6, 4, 0, -10, 6, 0, -8,
6, 0, -4, 6, 0, -2, 6, 0, 2, 6, 0, 4, 6, 0, -8, 8, 0, -6, 8, 0,
-2, 8, 0, 0, 8, 0, -6, 10, 0, -4, 10, 0]).reshape((54, 3)) / 18.0
cc54_1x1 = np.array([
2, 2, 0, 4, 4, 0, 8, 8, 0, 6, 8, 0, 4, 6, 0, 6,
10, 0, 4, 10, 0, 2, 6, 0, 2, 8, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, -2,
6, 0, -2, 4, 0, -4, 6, 0, -6, 4, 0, -4, 2, 0, -6, 2, 0, -2, 0, 0,
-4, 0, 0, -8, 0, 0, -8, -2, 0, -6, -2, 0, -10, -4, 0, -10, -6, 0,
-6, -4, 0, -8, -6, 0, -2, -2, 0, -4, -4, 0, -8, -8, 0, 4, -2, 0,
6, -2, 0, 6, -4, 0, 2, 0, 0, 4, 0, 0, 6, 2, 0, 6, 4, 0, 8, 6, 0,
8, 0, 0, 8, 2, 0, 10, 4, 0, 10, 6, 0, 2, -4, 0, 2, -6, 0, 4, -6,
0, 0, -2, 0, 0, -4, 0, -2, -6, 0, -4, -6, 0, -6, -8, 0, 0, -8, 0,
-2, -8, 0, -4, -10, 0, -6, -10, 0]).reshape((54, 3)) / 18.0
cc162_sq3xsq3 = np.array([
-8, 16, 0, -10, 14, 0, -7, 14, 0, -4, 14,
0, -11, 13, 0, -8, 13, 0, -5, 13, 0, -2, 13, 0, -13, 11, 0, -10,
11, 0, -7, 11, 0, -4, 11, 0, -1, 11, 0, 2, 11, 0, -14, 10, 0, -11,
10, 0, -8, 10, 0, -5, 10, 0, -2, 10, 0, 1, 10, 0, 4, 10, 0, -16,
8, 0, -13, 8, 0, -10, 8, 0, -7, 8, 0, -4, 8, 0, -1, 8, 0, 2, 8, 0,
5, 8, 0, 8, 8, 0, -14, 7, 0, -11, 7, 0, -8, 7, 0, -5, 7, 0, -2, 7,
0, 1, 7, 0, 4, 7, 0, 7, 7, 0, 10, 7, 0, -13, 5, 0, -10, 5, 0, -7,
5, 0, -4, 5, 0, -1, 5, 0, 2, 5, 0, 5, 5, 0, 8, 5, 0, 11, 5, 0,
-14, 4, 0, -11, 4, 0, -8, 4, 0, -5, 4, 0, -2, 4, 0, 1, 4, 0, 4, 4,
0, 7, 4, 0, 10, 4, 0, -13, 2, 0, -10, 2, 0, -7, 2, 0, -4, 2, 0,
-1, 2, 0, 2, 2, 0, 5, 2, 0, 8, 2, 0, 11, 2, 0, -11, 1, 0, -8, 1,
0, -5, 1, 0, -2, 1, 0, 1, 1, 0, 4, 1, 0, 7, 1, 0, 10, 1, 0, 13, 1,
0, -10, -1, 0, -7, -1, 0, -4, -1, 0, -1, -1, 0, 2, -1, 0, 5, -1,
0, 8, -1, 0, 11, -1, 0, 14, -1, 0, -11, -2, 0, -8, -2, 0, -5, -2,
0, -2, -2, 0, 1, -2, 0, 4, -2, 0, 7, -2, 0, 10, -2, 0, 13, -2, 0,
-10, -4, 0, -7, -4, 0, -4, -4, 0, -1, -4, 0, 2, -4, 0, 5, -4, 0,
8, -4, 0, 11, -4, 0, 14, -4, 0, -8, -5, 0, -5, -5, 0, -2, -5, 0,
1, -5, 0, 4, -5, 0, 7, -5, 0, 10, -5, 0, 13, -5, 0, 16, -5, 0, -7,
-7, 0, -4, -7, 0, -1, -7, 0, 2, -7, 0, 5, -7, 0, 8, -7, 0, 11, -7,
0, 14, -7, 0, 17, -7, 0, -8, -8, 0, -5, -8, 0, -2, -8, 0, 1, -8,
0, 4, -8, 0, 7, -8, 0, 10, -8, 0, 13, -8, 0, 16, -8, 0, -7, -10,
0, -4, -10, 0, -1, -10, 0, 2, -10, 0, 5, -10, 0, 8, -10, 0, 11,
-10, 0, 14, -10, 0, 17, -10, 0, -5, -11, 0, -2, -11, 0, 1, -11, 0,
4, -11, 0, 7, -11, 0, 10, -11, 0, 13, -11, 0, 16, -11, 0, -1, -13,
0, 2, -13, 0, 5, -13, 0, 8, -13, 0, 11, -13, 0, 14, -13, 0, 1,
-14, 0, 4, -14, 0, 7, -14, 0, 10, -14, 0, 13, -14, 0, 5, -16, 0,
8, -16, 0, 11, -16, 0, 7, -17, 0, 10, -17, 0]).reshape((162, 3)) / 27.0
cc162_1x1 = np.array([
-8, -16, 0, -10, -14, 0, -7, -14, 0, -4, -14,
0, -11, -13, 0, -8, -13, 0, -5, -13, 0, -2, -13, 0, -13, -11, 0,
-10, -11, 0, -7, -11, 0, -4, -11, 0, -1, -11, 0, 2, -11, 0, -14,
-10, 0, -11, -10, 0, -8, -10, 0, -5, -10, 0, -2, -10, 0, 1, -10,
0, 4, -10, 0, -16, -8, 0, -13, -8, 0, -10, -8, 0, -7, -8, 0, -4,
-8, 0, -1, -8, 0, 2, -8, 0, 5, -8, 0, 8, -8, 0, -14, -7, 0, -11,
-7, 0, -8, -7, 0, -5, -7, 0, -2, -7, 0, 1, -7, 0, 4, -7, 0, 7, -7,
0, 10, -7, 0, -13, -5, 0, -10, -5, 0, -7, -5, 0, -4, -5, 0, -1,
-5, 0, 2, -5, 0, 5, -5, 0, 8, -5, 0, 11, -5, 0, -14, -4, 0, -11,
-4, 0, -8, -4, 0, -5, -4, 0, -2, -4, 0, 1, -4, 0, 4, -4, 0, 7, -4,
0, 10, -4, 0, -13, -2, 0, -10, -2, 0, -7, -2, 0, -4, -2, 0, -1,
-2, 0, 2, -2, 0, 5, -2, 0, 8, -2, 0, 11, -2, 0, -11, -1, 0, -8,
-1, 0, -5, -1, 0, -2, -1, 0, 1, -1, 0, 4, -1, 0, 7, -1, 0, 10, -1,
0, 13, -1, 0, -10, 1, 0, -7, 1, 0, -4, 1, 0, -1, 1, 0, 2, 1, 0, 5,
1, 0, 8, 1, 0, 11, 1, 0, 14, 1, 0, -11, 2, 0, -8, 2, 0, -5, 2, 0,
-2, 2, 0, 1, 2, 0, 4, 2, 0, 7, 2, 0, 10, 2, 0, 13, 2, 0, -10, 4,
0, -7, 4, 0, -4, 4, 0, -1, 4, 0, 2, 4, 0, 5, 4, 0, 8, 4, 0, 11, 4,
0, 14, 4, 0, -8, 5, 0, -5, 5, 0, -2, 5, 0, 1, 5, 0, 4, 5, 0, 7, 5,
0, 10, 5, 0, 13, 5, 0, 16, 5, 0, -7, 7, 0, -4, 7, 0, -1, 7, 0, 2,
7, 0, 5, 7, 0, 8, 7, 0, 11, 7, 0, 14, 7, 0, 17, 7, 0, -8, 8, 0,
-5, 8, 0, -2, 8, 0, 1, 8, 0, 4, 8, 0, 7, 8, 0, 10, 8, 0, 13, 8, 0,
16, 8, 0, -7, 10, 0, -4, 10, 0, -1, 10, 0, 2, 10, 0, 5, 10, 0, 8,
10, 0, 11, 10, 0, 14, 10, 0, 17, 10, 0, -5, 11, 0, -2, 11, 0, 1,
11, 0, 4, 11, 0, 7, 11, 0, 10, 11, 0, 13, 11, 0, 16, 11, 0, -1,
13, 0, 2, 13, 0, 5, 13, 0, 8, 13, 0, 11, 13, 0, 14, 13, 0, 1, 14,
0, 4, 14, 0, 7, 14, 0, 10, 14, 0, 13, 14, 0, 5, 16, 0, 8, 16, 0,
11, 16, 0, 7, 17, 0, 10, 17, 0]).reshape((162, 3)) / 27.0
# The following is a list of the critical points in the 1. Brillouin zone
# for some typical crystal structures.
# (In units of the reciprocal basis vectors)
# See http://en.wikipedia.org/wiki/Brillouin_zone
ibz_points = {'cubic': {'Gamma': [0, 0, 0],
'X': [0, 0 / 2, 1 / 2],
'R': [1 / 2, 1 / 2, 1 / 2],
'M': [0 / 2, 1 / 2, 1 / 2]},
'fcc': {'Gamma': [0, 0, 0],
'X': [1 / 2, 0, 1 / 2],
'W': [1 / 2, 1 / 4, 3 / 4],
'K': [3 / 8, 3 / 8, 3 / 4],
'U': [5 / 8, 1 / 4, 5 / 8],
'L': [1 / 2, 1 / 2, 1 / 2]},
'bcc': {'Gamma': [0, 0, 0],
'H': [1 / 2, -1 / 2, 1 / 2],
'N': [0, 0, 1 / 2],
'P': [1 / 4, 1 / 4, 1 / 4]},
'hexagonal': {'Gamma': [0, 0, 0],
'M': [0, 1 / 2, 0],
'K': [-1 / 3, 1 / 3, 0],
'A': [0, 0, 1 / 2],
'L': [0, 1 / 2, 1 / 2],
'H': [-1 / 3, 1 / 3, 1 / 2]},
'tetragonal': {'Gamma': [0, 0, 0],
'X': [1 / 2, 0, 0],
'M': [1 / 2, 1 / 2, 0],
'Z': [0, 0, 1 / 2],
'R': [1 / 2, 0, 1 / 2],
'A': [1 / 2, 1 / 2, 1 / 2]},
'orthorhombic': {'Gamma': [0, 0, 0],
'R': [1 / 2, 1 / 2, 1 / 2],
'S': [1 / 2, 1 / 2, 0],
'T': [0, 1 / 2, 1 / 2],
'U': [1 / 2, 0, 1 / 2],
'X': [1 / 2, 0, 0],
'Y': [0, 1 / 2, 0],
'Z': [0, 0, 1 / 2]}}
|