File: dimer.py

package info (click to toggle)
python-ase 3.12.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,192 kB
  • ctags: 8,112
  • sloc: python: 93,375; sh: 99; makefile: 94
file content (1165 lines) | stat: -rw-r--r-- 45,709 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
"""Minimum mode follower for finding saddle points in an unbiased way.

There is, currently, only one implemented method: The Dimer method.

"""

import sys
import time
import warnings

import numpy as np

from ase.optimize.optimize import Optimizer
from math import cos, sin, atan, tan, degrees, pi, sqrt
from ase.parallel import rank, size, world
from ase.calculators.singlepoint import SinglePointCalculator

# Handy vector methods
norm = np.linalg.norm


def normalize(vector):
    """Create a unit vector along *vector*"""
    return vector / norm(vector)

    
def parallel_vector(vector, base):
    """Extract the components of *vector* that are parallel to *base*"""
    return np.vdot(vector, base) * base

    
def perpendicular_vector(vector, base):
    """Remove the components of *vector* that are parallel to *base*"""
    return vector - parallel_vector(vector, base)

    
def rotate_vectors(v1i, v2i, angle):
    """Rotate vectors *v1i* and *v2i* by *angle*"""
    cAng = cos(angle)
    sAng = sin(angle)
    v1o = v1i * cAng + v2i * sAng
    v2o = v2i * cAng - v1i * sAng
    # Ensure the length of the input and output vectors is equal
    return normalize(v1o) * norm(v1i), normalize(v2o) * norm(v2i)


class DimerEigenmodeSearch:
    """An implementation of the Dimer's minimum eigenvalue mode search.

    This class implements the rotational part of the dimer saddle point
    searching method.

    Parameters:

    atoms: MinModeAtoms object
        MinModeAtoms is an extension to the Atoms object, which includes
        information about the lowest eigenvalue mode.
    control: DimerControl object
        Contains the parameters necessary for the eigenmode search.
        If no control object is supplied a default DimerControl
        will be created and used.
    basis: list of xyz-values
        Eigenmode. Must be an ndarray of shape (n, 3).
        It is possible to constrain the eigenmodes to be orthogonal
        to this given eigenmode.

    Notes:

    The code is inspired, with permission, by code written by the Henkelman
    group, which can be found at http://theory.cm.utexas.edu/vtsttools/code/

    References:

    * Henkelman and Jonsson, JCP 111, 7010 (1999)
    * Olsen, Kroes, Henkelman, Arnaldsson, and Jonsson, JCP 121,
      9776 (2004).
    * Heyden, Bell, and Keil, JCP 123, 224101 (2005).
    * Kastner and Sherwood, JCP 128, 014106 (2008).

    """
    def __init__(self, atoms, control=None, eigenmode=None, basis=None,
                 **kwargs):
        if hasattr(atoms, 'get_eigenmode'):
            self.atoms = atoms
        else:
            e = 'The atoms object must be a MinModeAtoms object'
            raise TypeError(e)
        self.basis = basis

        if eigenmode is None:
            self.eigenmode = self.atoms.get_eigenmode()
        else:
            self.eigenmode = eigenmode

        if control is None:
            self.control = DimerControl(**kwargs)
            w = 'Missing control object in ' + self.__class__.__name__ + \
                '. Using default: DimerControl()'
            warnings.warn(w, UserWarning)
            if self.control.logfile is not None:
                self.control.logfile.write('DIM:WARN: ' + w + '\n')
                self.control.logfile.flush()
        else:
            self.control = control
            # kwargs must be empty if a control object is supplied
            for key in kwargs:
                e = '__init__() got an unexpected keyword argument \'%s\'' % \
                    (key)
                raise TypeError(e)

        self.dR = self.control.get_parameter('dimer_separation')
        self.logfile = self.control.get_logfile()

    def converge_to_eigenmode(self):
        """Perform an eigenmode search."""
        self.set_up_for_eigenmode_search()
        stoprot = False

        # Load the relevant parameters from control
        f_rot_min = self.control.get_parameter('f_rot_min')
        f_rot_max = self.control.get_parameter('f_rot_max')
        trial_angle = self.control.get_parameter('trial_angle')
        max_num_rot = self.control.get_parameter('max_num_rot')
        extrapolate = self.control.get_parameter('extrapolate_forces')

        while not stoprot:
            if self.forces1E is None:
                self.update_virtual_forces()
            else:
                self.update_virtual_forces(extrapolated_forces=True)
            self.forces1A = self.forces1
            self.update_curvature()
            f_rot_A = self.get_rotational_force()

            # Pre rotation stop criteria
            if norm(f_rot_A) <= f_rot_min:
                self.log(f_rot_A, None)
                stoprot = True
            else:
                n_A = self.eigenmode
                rot_unit_A = normalize(f_rot_A)

                # Get the curvature and its derivative
                c0 = self.get_curvature()
                c0d = np.vdot((self.forces2 - self.forces1), rot_unit_A) / \
                      self.dR

                # Trial rotation (no need to store the curvature)
                # NYI variable trial angles from [3]
                n_B, rot_unit_B = rotate_vectors(n_A, rot_unit_A, trial_angle)
                self.eigenmode = n_B
                self.update_virtual_forces()
                self.forces1B = self.forces1

                # Get the curvature's derivative
                c1d = np.vdot((self.forces2 - self.forces1), rot_unit_B) / \
                      self.dR

                # Calculate the Fourier coefficients
                a1 = c0d * cos(2 * trial_angle) - c1d / \
                     (2 * sin(2 * trial_angle))
                b1 = 0.5 * c0d
                a0 = 2 * (c0 - a1)

                # Estimate the rotational angle
                rotangle = atan(b1 / a1) / 2.0

                # Make sure that you didn't find a maximum
                cmin = a0 / 2.0 + a1 * cos(2 * rotangle) + \
                       b1 * sin(2 * rotangle)
                if c0 < cmin:
                    rotangle += pi / 2.0

                # Rotate into the (hopefully) lowest eigenmode
                # NYI Conjugate gradient rotation
                n_min, dummy = rotate_vectors(n_A, rot_unit_A, rotangle)
                self.update_eigenmode(n_min)

                # Store the curvature estimate instead of the old curvature
                self.update_curvature(cmin)

                self.log(f_rot_A, rotangle)

                # Force extrapolation scheme from [4]
                if extrapolate:
                    self.forces1E = sin(trial_angle - rotangle) / \
                        sin(trial_angle) * self.forces1A + sin(rotangle) / \
                        sin(trial_angle) * self.forces1B + \
                        (1 - cos(rotangle) - sin(rotangle) * \
                        tan(trial_angle / 2.0)) * self.forces0
                else:
                    self.forces1E = None

            # Post rotation stop criteria
            if not stoprot:
                if self.control.get_counter('rotcount') >= max_num_rot:
                    stoprot = True
                elif norm(f_rot_A) <= f_rot_max:
                    stoprot = True

    def log(self, f_rot_A, angle):
        """Log each rotational step."""
        # NYI Log for the trial angle
        if self.logfile is not None:
            if angle:
                l = 'DIM:ROT: %7d %9d %9.4f %9.4f %9.4f\n' % \
                    (self.control.get_counter('optcount'),
                    self.control.get_counter('rotcount'),
                    self.get_curvature(), degrees(angle), norm(f_rot_A))
            else:
                l = 'DIM:ROT: %7d %9d %9.4f %9s %9.4f\n' % \
                    (self.control.get_counter('optcount'),
                    self.control.get_counter('rotcount'),
                    self.get_curvature(), '---------', norm(f_rot_A))
            self.logfile.write(l)
            self.logfile.flush()

    def get_rotational_force(self):
        """Calculate the rotational force that acts on the dimer."""
        rot_force = perpendicular_vector((self.forces1 - self.forces2),
                    self.eigenmode) / (2.0 * self.dR)
        if self.basis is not None:
            if len(self.basis) == len(self.atoms) and len(self.basis[0]) == \
               3 and isinstance(self.basis[0][0], float):
                rot_force = perpendicular_vector(rot_force, self.basis)
            else:
                for base in self.basis:
                    rot_force = perpendicular_vector(rot_force, base)
        return rot_force

    def update_curvature(self, curv = None):
        """Update the curvature in the MinModeAtoms object."""
        if curv:
            self.curvature = curv
        else:
            self.curvature = np.vdot((self.forces2 - self.forces1),
                             self.eigenmode) / (2.0 * self.dR)

    def update_eigenmode(self, eigenmode):
        """Update the eigenmode in the MinModeAtoms object."""
        self.eigenmode = eigenmode
        self.update_virtual_positions()
        self.control.increment_counter('rotcount')

    def get_eigenmode(self):
        """Returns the current eigenmode."""
        return self.eigenmode

    def get_curvature(self):
        """Returns the curvature along the current eigenmode."""
        return self.curvature

    def get_control(self):
        """Return the control object."""
        return self.control

    def update_center_forces(self):
        """Get the forces at the center of the dimer."""
        self.atoms.set_positions(self.pos0)
        self.forces0 = self.atoms.get_forces(real = True)
        self.energy0 = self.atoms.get_potential_energy()

    def update_virtual_forces(self, extrapolated_forces = False):
        """Get the forces at the endpoints of the dimer."""
        self.update_virtual_positions()

        # Estimate / Calculate the forces at pos1
        if extrapolated_forces:
            self.forces1 = self.forces1E.copy()
        else:
            self.forces1 = self.atoms.get_forces(real = True, pos = self.pos1)

        # Estimate / Calculate the forces at pos2
        if self.control.get_parameter('use_central_forces'):
            self.forces2 = 2 * self.forces0 - self.forces1
        else:
            self.forces2 = self.atoms.get_forces(real = True, pos = self.pos2)

    def update_virtual_positions(self):
        """Update the end point positions."""
        self.pos1 = self.pos0 + self.eigenmode * self.dR
        self.pos2 = self.pos0 - self.eigenmode * self.dR

    def set_up_for_eigenmode_search(self):
        """Before eigenmode search, prepare for rotation."""
        self.pos0 = self.atoms.get_positions()
        self.update_center_forces()
        self.update_virtual_positions()
        self.control.reset_counter('rotcount')
        self.forces1E = None

    def set_up_for_optimization_step(self):
        """At the end of rotation, prepare for displacement of the dimer."""
        self.atoms.set_positions(self.pos0)
        self.forces1E = None

class MinModeControl:
    """A parent class for controlling minimum mode saddle point searches.

    Method specific control classes inherit this one. The only thing
    inheriting classes need to implement are the log() method and
    the *parameters* class variable with default values for ALL
    parameters needed by the method in question.
    When instantiating control classes default parameter values can
    be overwritten.

    """
    parameters = {}
    def __init__(self, logfile = '-', eigenmode_logfile=None, **kwargs):
        # Overwrite the defaults with the input parameters given
        for key in kwargs:
            if not key in self.parameters.keys():
                e = 'Invalid parameter >>%s<< with value >>%s<< in %s' % \
                    (key, str(kwargs[key]), self.__class__.__name__)
                raise ValueError(e)
            else:
                self.set_parameter(key, kwargs[key], log = False)

        # Initialize the log files
        self.initialize_logfiles(logfile, eigenmode_logfile)

        # Initialize the counters
        self.counters = {'forcecalls': 0, 'rotcount': 0, 'optcount': 0}

        self.log()

    def initialize_logfiles(self, logfile=None, eigenmode_logfile=None):
        """Set up the log files."""
        # Set up the regular logfile
        if rank != 0:
            logfile = None
        elif isinstance(logfile, str):
            if logfile == '-':
                logfile = sys.stdout
            else:
                logfile = open(logfile, 'a')
        self.logfile = logfile

        # Set up the eigenmode logfile
        if eigenmode_logfile:
            if rank != 0:
                eigenmode_logfile = None
            elif isinstance(eigenmode_logfile, str):
                if eigenmode_logfile == '-':
                    eigenmode_logfile = sys.stdout
                else:
                    eigenmode_logfile = open(eigenmode_logfile, 'a')
        self.eigenmode_logfile = eigenmode_logfile

    def log(self, parameter=None):
        """Log the parameters of the eigenmode search."""
        pass

    def set_parameter(self, parameter, value, log=True):
        """Change a parameter's value."""
        if not parameter in self.parameters.keys():
            e = 'Invalid parameter >>%s<< with value >>%s<<' % \
                (parameter, str(value))
            raise ValueError(e)
        self.parameters[parameter] = value
        if log:
            self.log(parameter)

    def get_parameter(self, parameter):
        """Returns the value of a parameter."""
        if not parameter in self.parameters.keys():
            e = 'Invalid parameter >>%s<<' % \
                (parameter)
            raise ValueError(e)
        return self.parameters[parameter]

    def get_logfile(self):
        """Returns the log file."""
        return self.logfile

    def get_eigenmode_logfile(self):
        """Returns the eigenmode log file."""
        return self.eigenmode_logfile

    def get_counter(self, counter):
        """Returns a given counter."""
        return self.counters[counter]

    def increment_counter(self, counter):
        """Increment a given counter."""
        self.counters[counter] += 1

    def reset_counter(self, counter):
        """Reset a given counter."""
        self.counters[counter] = 0

    def reset_all_counters(self):
        """Reset all counters."""
        for key in self.counters.keys():
            self.counters[key] = 0

class DimerControl(MinModeControl):
    """A class that takes care of the parameters needed for a Dimer search.

    Parameters:

    eigenmode_method: str
        The name of the eigenmode search method.
    f_rot_min: float
        Size of the rotational force under which no rotation will be
        performed.
    f_rot_max: float
        Size of the rotational force under which only one rotation will be
        performed.
    max_num_rot: int
        Maximum number of rotations per optimizer step.
    trial_angle: float
        Trial angle for the finite difference estimate of the rotational
        angle in radians.
    trial_trans_step: float
        Trial step size for the MinModeTranslate optimizer.
    maximum_translation: float
        Maximum step size and forced step size when the curvature is still
        positive for the MinModeTranslate optimizer.
    cg_translation: bool
        Conjugate Gradient for the MinModeTranslate optimizer.
    use_central_forces: bool
        Only calculate the forces at one end of the dimer and extrapolate
        the forces to the other.
    dimer_separation: float
        Separation of the dimer's images.
    initial_eigenmode_method: str
        How to construct the initial eigenmode of the dimer. If an eigenmode
        is given when creating the MinModeAtoms object, this will be ignored.
        Possible choices are: 'gauss' and 'displacement'
    extrapolate_forces: bool
        When more than one rotation is performed, an extrapolation scheme can
        be used to reduce the number of force evaluations.
    displacement_method: str
        How to displace the atoms. Possible choices are 'gauss' and 'vector'.
    gauss_std: float
        The standard deviation of the gauss curve used when doing random
        displacement.
    order: int
        How many lowest eigenmodes will be inverted.
    mask: list of bool
        Which atoms will be moved during displacement.
    displacement_center: int or [float, float, float]
        The center of displacement, nearby atoms will be displaced.
    displacement_radius: float
        When choosing which atoms to displace with the *displacement_center*
        keyword, this decides how many nearby atoms to displace.
    number_of_displacement_atoms: int
        The amount of atoms near *displacement_center* to displace.

    """
    # Default parameters for the Dimer eigenmode search
    parameters = {'eigenmode_method': 'dimer',
                  'f_rot_min': 0.1,
                  'f_rot_max': 1.00,
                  'max_num_rot': 1,
                  'trial_angle': pi / 4.0,
                  'trial_trans_step': 0.001,
                  'maximum_translation': 0.1,
                  'cg_translation': True,
                  'use_central_forces': True,
                  'dimer_separation': 0.0001,
                  'initial_eigenmode_method': 'gauss',
                  'extrapolate_forces': False,
                  'displacement_method': 'gauss',
                  'gauss_std': 0.1,
                  'order': 1,
                  'mask': None, # NB mask should not be a "parameter"
                  'displacement_center': None,
                  'displacement_radius': None,
                  'number_of_displacement_atoms': None}

    # NB: Can maybe put this in EigenmodeSearch and MinModeControl
    def log(self, parameter=None):
        """Log the parameters of the eigenmode search."""
        if self.logfile is not None:
            if parameter is not None:
                l = 'DIM:CONTROL: Updated Parameter: %s = %s\n' % (parameter,
                     str(self.get_parameter(parameter)))
            else:
                l = 'MINMODE:METHOD: Dimer\n'
                l += 'DIM:CONTROL: Search Parameters:\n'
                l += 'DIM:CONTROL: ------------------\n'
                for key in self.parameters:
                    l += 'DIM:CONTROL: %s = %s\n' % (key,
                         str(self.get_parameter(key)))
                l += 'DIM:CONTROL: ------------------\n'
                l += 'DIM:ROT: OPT-STEP ROT-STEP CURVATURE ROT-ANGLE ' + \
                     'ROT-FORCE\n'
            self.logfile.write(l)
            self.logfile.flush()

class MinModeAtoms:
    """Wrapper for Atoms with information related to minimum mode searching.

    Contains an Atoms object and pipes all unknown function calls to that
    object.
    Other information that is stored in this object are the estimate for
    the lowest eigenvalue, *curvature*, and its corresponding eigenmode,
    *eigenmode*. Furthermore, the original configuration of the Atoms
    object is stored for use in multiple minimum mode searches.
    The forces on the system are modified by inverting the component
    along the eigenmode estimate. This eventually brings the system to
    a saddle point.

    Parameters:

    atoms : Atoms object
        A regular Atoms object
    control : MinModeControl object
        Contains the parameters necessary for the eigenmode search.
        If no control object is supplied a default DimerControl
        will be created and used.
    mask: list of bool
        Determines which atoms will be moved when calling displace()
    random_seed: int
        The seed used for the random number generator. Defaults to
        modified version the current time.

    References:

    .. [1] Henkelman and Jonsson, JCP 111, 7010 (1999)
    .. [2] Olsen, Kroes, Henkelman, Arnaldsson, and Jonsson, JCP 121,
           9776 (2004).
    .. [3] Heyden, Bell, and Keil, JCP 123, 224101 (2005).
    .. [4] Kastner and Sherwood, JCP 128, 014106 (2008).

    """
    def __init__(self, atoms, control=None, eigenmodes=None, random_seed=None, **kwargs):
        self.minmode_init = True
        self.atoms = atoms

        # Initialize to None to avoid strange behaviour due to __getattr__
        self.eigenmodes = eigenmodes
        self.curvatures = None

        if control is None:
            self.control = DimerControl(**kwargs)
            w = 'Missing control object in ' + self.__class__.__name__ + \
                '. Using default: DimerControl()'
            warnings.warn(w, UserWarning)
            if self.control.logfile is not None:
                self.control.logfile.write('DIM:WARN: ' + w + '\n')
                self.control.logfile.flush()
        else:
            self.control = control
            logfile = self.control.get_logfile()
            mlogfile = self.control.get_eigenmode_logfile()
            for key in kwargs:
                if key == 'logfile':
                    logfile = kwargs[key]
                elif key == 'eigenmode_logfile':
                    mlogfile = kwargs[key]
                else:
                    self.control.set_parameter(key, kwargs[key])
            self.control.initialize_logfiles(logfile = logfile,
                                             eigenmode_logfile = mlogfile)

        # Seed the randomness
        if random_seed is None:
            t = time.time()
            if size > 1:
                t = world.sum(t) / float(size)
            # Harvest the latter part of the current time
            random_seed = int(('%30.9f' % t)[-9:])
        self.random_state = np.random.RandomState(random_seed)

        # Check the order
        self.order = self.control.get_parameter('order')

        # Construct the curvatures list
        self.curvatures = [100.0] * self.order

        # Save the original state of the atoms.
        self.atoms0 = self.atoms.copy()
        self.save_original_forces()

        # Get a reference to the log files
        self.logfile = self.control.get_logfile()
        self.mlogfile = self.control.get_eigenmode_logfile()

    def save_original_forces(self, force_calculation=False):
        """Store the forces (and energy) of the original state."""
        # NB: Would be nice if atoms.copy() took care of this.
        if self.calc is not None:
            # Hack because some calculators do not have calculation_required
            if (hasattr(self.calc, 'calculation_required') \
               and not self.calc.calculation_required(self.atoms,
               ['energy', 'forces'])) or force_calculation:
                calc = SinglePointCalculator(
                    self.atoms0,
                    energy=self.atoms.get_potential_energy(),
                    forces=self.atoms.get_forces())
                self.atoms0.set_calculator(calc)

    def initialize_eigenmodes(self, method=None, eigenmodes=None, \
                              gauss_std=None):
        """Make an initial guess for the eigenmode."""
        if eigenmodes is None:
            pos = self.get_positions()
            old_pos = self.get_original_positions()
            if method == None:
                method = \
                     self.control.get_parameter('initial_eigenmode_method')
            if method.lower() == 'displacement' and (pos - old_pos).any():
                eigenmode = normalize(pos - old_pos)
            elif method.lower() == 'gauss':
                self.displace(log = False, gauss_std = gauss_std,
                              method = method)
                new_pos = self.get_positions()
                eigenmode = normalize(new_pos - pos)
                self.set_positions(pos)
            else:
                e = 'initial_eigenmode must use either \'gauss\' or ' + \
                    '\'displacement\', if the latter is used the atoms ' + \
                    'must have moved away from the original positions.' + \
                    'You have requested \'%s\'.' % method
                raise NotImplementedError(e) # NYI
            eigenmodes = [eigenmode]

        # Create random higher order mode guesses
        if self.order > 1:
            if len(eigenmodes) == 1:
                for k in range(1, self.order):
                    pos = self.get_positions()
                    self.displace(log = False, gauss_std = gauss_std,
                                  method = method)
                    new_pos = self.get_positions()
                    eigenmode = normalize(new_pos - pos)
                    self.set_positions(pos)
                    eigenmodes += [eigenmode]

        self.eigenmodes = eigenmodes
        # Ensure that the higher order mode guesses are all orthogonal
        if self.order > 1:
            for k in range(self.order):
                self.ensure_eigenmode_orthogonality(k)
        self.eigenmode_log()

    # NB maybe this name might be confusing in context to
    # calc.calculation_required()
    def calculation_required(self):
        """Check if a calculation is required."""
        return self.minmode_init or self.check_atoms != self.atoms

    def calculate_real_forces_and_energies(self, **kwargs):
        """Calculate and store the potential energy and forces."""
        if self.minmode_init:
            self.minmode_init = False
            self.initialize_eigenmodes(eigenmodes = self.eigenmodes)
        self.rotation_required = True
        self.forces0 = self.atoms.get_forces(**kwargs)
        self.energy0 = self.atoms.get_potential_energy()
        self.control.increment_counter('forcecalls')
        self.check_atoms = self.atoms.copy()

    def get_potential_energy(self):
        """Return the potential energy."""
        if self.calculation_required():
            self.calculate_real_forces_and_energies()
        return self.energy0

    def get_forces(self, real=False, pos=None, **kwargs):
        """Return the forces, projected or real."""
        if self.calculation_required() and pos is None:
            self.calculate_real_forces_and_energies(**kwargs)
        if real and pos is None:
            return self.forces0
        elif real and pos is not None:
            old_pos = self.atoms.get_positions()
            self.atoms.set_positions(pos)
            forces = self.atoms.get_forces()
            self.control.increment_counter('forcecalls')
            self.atoms.set_positions(old_pos)
            return forces
        else:
            if self.rotation_required:
                self.find_eigenmodes(order = self.order)
                self.eigenmode_log()
                self.rotation_required = False
                self.control.increment_counter('optcount')
            return self.get_projected_forces()

    def ensure_eigenmode_orthogonality(self, order):
        mode = self.eigenmodes[order - 1].copy()
        for k in range(order - 1):
            mode = perpendicular_vector(mode, self.eigenmodes[k])
        self.eigenmodes[order - 1] = normalize(mode)

    def find_eigenmodes(self, order=1):
        """Launch eigenmode searches."""
        if self.control.get_parameter('eigenmode_method').lower() != 'dimer':
            e = 'Only the Dimer control object has been implemented.'
            raise NotImplementedError(e) # NYI
        for k in range(order):
            if k > 0:
                self.ensure_eigenmode_orthogonality(k + 1)
            search = DimerEigenmodeSearch(self, self.control, \
                eigenmode = self.eigenmodes[k], basis = self.eigenmodes[:k])
            search.converge_to_eigenmode()
            search.set_up_for_optimization_step()
            self.eigenmodes[k] = search.get_eigenmode()
            self.curvatures[k] = search.get_curvature()

    def get_projected_forces(self, pos=None):
        """Return the projected forces."""
        if pos is not None:
            forces = self.get_forces(real = True, pos = pos).copy()
        else:
            forces = self.forces0.copy()

        # Loop through all the eigenmodes
        # NB: Can this be done with a linear combination, instead?
        for k, mode in enumerate(self.eigenmodes):
            # NYI This If statement needs to be overridable in the control
            if self.get_curvature(order = k) > 0.0 and self.order == 1:
                forces = -parallel_vector(forces, mode)
            else:
                forces -= 2 * parallel_vector(forces, mode)
        return forces

    def restore_original_positions(self):
        """Restore the MinModeAtoms object positions to the original state."""
        self.atoms.set_positions(self.get_original_positions())

    def get_barrier_energy(self):
        """The energy difference between the current and original states"""
        try:
            original_energy = self.get_original_potential_energy()
            dimer_energy = self.get_potential_energy()
            return dimer_energy - original_energy
        except RuntimeError:
            w = 'The potential energy is not available, without further ' + \
                'calculations, most likely at the original state.'
            warnings.warn(w, UserWarning)
            return np.nan

    def get_control(self):
        """Return the control object."""
        return self.control

    def get_curvature(self, order='max'):
        """Return the eigenvalue estimate."""
        if order == 'max':
            return max(self.curvatures)
        else:
            return self.curvatures[order - 1]

    def get_eigenmode(self, order=1):
        """Return the current eigenmode guess."""
        return self.eigenmodes[order - 1]

    def get_atoms(self):
        """Return the unextended Atoms object."""
        return self.atoms

    def set_atoms(self, atoms):
        """Set a new Atoms object"""
        self.atoms = atoms

    def set_eigenmode(self, eigenmode, order=1):
        """Set the eigenmode guess."""
        self.eigenmodes[order - 1] = eigenmode

    def set_curvature(self, curvature, order=1):
        """Set the eigenvalue estimate."""
        self.curvatures[order - 1] = curvature

    # Pipe all the stuff from Atoms that is not overwritten.
    # Pipe all requests for get_original_* to self.atoms0.
    def __getattr__(self, attr):
        """Return any value of the Atoms object"""
        if 'original' in attr.split('_'):
            attr = attr.replace('_original_', '_')
            return getattr(self.atoms0, attr)
        else:
            return getattr(self.atoms, attr)

    def __len__(self):
        return len(self.atoms)
        
    def displace(self, displacement_vector=None, mask=None, method=None,
                 displacement_center=None, radius=None, number_of_atoms=None,
                 gauss_std=None, mic=True, log=True):
        """Move the atoms away from their current position.

        This is one of the essential parts of minimum mode searches.
        The parameters can all be set in the control object and overwritten
        when this method is run, apart from *displacement_vector*.
        It is preferred to modify the control values rather than those here
        in order for the correct ones to show up in the log file.

        *method* can be either 'gauss' for random displacement or 'vector'
        to perform a predefined displacement.

        *gauss_std* is the standard deviation of the gauss curve that is
        used for random displacement.

        *displacement_center* can be either the number of an atom or a 3D
        position. It must be accompanied by a *radius* (all atoms within it
        will be displaced) or a *number_of_atoms* which decides how many of
        the closest atoms will be displaced.

        *mic* controls the usage of the Minimum Image Convention.

        If both *mask* and *displacement_center* are used, the atoms marked
        as False in the *mask* will not be affected even though they are
        within reach of the *displacement_center*.

        The parameters priority order:
        1) displacement_vector
        2) mask
        3) displacement_center (with radius and/or number_of_atoms)

        If both *radius* and *number_of_atoms* are supplied with
        *displacement_center*, only atoms that fulfill both criteria will
        be displaced.

        """

        # Fetch the default values from the control
        if mask is None:
            mask = self.control.get_parameter('mask')
        if method is None:
            method = self.control.get_parameter('displacement_method')
        if gauss_std is None:
            gauss_std = self.control.get_parameter('gauss_std')
        if displacement_center is None:
            displacement_center = \
                    self.control.get_parameter('displacement_center')
        if radius is None:
            radius = self.control.get_parameter('displacement_radius')
        if number_of_atoms is None:
            number_of_atoms = \
                    self.control.get_parameter('number_of_displacement_atoms')

        # Check for conflicts
        if displacement_vector is not None and method.lower() != 'vector':
            e = 'displacement_vector was supplied but a different method ' + \
                '(\'%s\') was chosen.\n' % str(method)
            raise ValueError(e)
        elif displacement_vector is None and method.lower() == 'vector':
            e = 'A displacement_vector must be supplied when using ' + \
                'method = \'%s\'.\n' % str(method)
            raise ValueError(e)
        elif displacement_center is not None and radius is None and \
           number_of_atoms is None:
            e = 'When displacement_center is chosen, either radius or ' + \
                'number_of_atoms must be supplied.\n'
            raise ValueError(e)

        # Set up the center of displacement mask (c_mask)
        if displacement_center is not None:
            c = displacement_center
            # Construct a distance list
            # The center is an atom
            if isinstance(c, int):
                # Parse negative indexes
                c = displacement_center % len(self)
                d = [(k, self.get_distance(k, c, mic = mic)) for k in \
                     range(len(self))]
            # The center is a position in 3D space
            elif len(c) == 3 and [type(c_k) for c_k in c] == [float]*3:
                # NB: MIC is not considered.
                d = [(k, norm(self.get_positions()[k] - c)) \
                     for k in range(len(self))]
            else:
                e = 'displacement_center must be either the number of an ' + \
                    'atom in MinModeAtoms object or a 3D position ' + \
                    '(3-tuple of floats).'
                raise ValueError(e)

            # Set up the mask
            if radius is not None:
                r_mask = [dist[1] < radius for dist in d]
            else:
                r_mask = [True for _ in self]

            if number_of_atoms is not None:
                d_sorted = [n[0] for n in sorted(d, key = lambda k: k[1])]
                n_nearest = d_sorted[:number_of_atoms]
                n_mask = [k in n_nearest for k in range(len(self))]
            else:
                n_mask = [True for _ in self]

            # Resolve n_mask / r_mask conflicts
            c_mask = [n_mask[k] and r_mask[k] for k in range(len(self))]
        else:
            c_mask = None

        # Set up a True mask if there is no mask supplied
        if mask is None:
            mask = [True for _ in self]
            if c_mask is None:
                w = 'It was not possible to figure out which atoms to ' + \
                    'displace, Will try to displace all atoms.\n'
                warnings.warn(w, UserWarning)
                if self.logfile is not None:
                    self.logfile.write('MINMODE:WARN: ' + w + '\n')
                    self.logfile.flush()

        # Resolve mask / c_mask conflicts
        if c_mask is not None:
            mask = [mask[k] and c_mask[k] for k in range(len(self))]

        if displacement_vector is None:
            displacement_vector = []
            for k in range(len(self)):
                if mask[k]:
                    diff_line = []
                    for _ in range(3):
                        if method.lower() == 'gauss':
                            if not gauss_std:
                                gauss_std = \
                                self.control.get_parameter('gauss_std')
                            diff = self.random_state.normal(0.0, gauss_std)
                        else:
                            e = 'Invalid displacement method >>%s<<' % \
                                 str(method)
                            raise ValueError(e)
                        diff_line.append(diff)
                    displacement_vector.append(diff_line)
                else:
                    displacement_vector.append([0.0]*3)

        # Remove displacement of masked atoms
        for k in range(len(mask)):
            if not mask[k]:
                displacement_vector[k] = [0.0]*3

        # Perform the displacement and log it
        if log:
            pos0 = self.get_positions()
        self.set_positions(self.get_positions() + displacement_vector)
        if log:
            parameters = {'mask': mask,
                          'displacement_method': method,
                          'gauss_std': gauss_std,
                          'displacement_center': displacement_center,
                          'displacement_radius': radius,
                          'number_of_displacement_atoms': number_of_atoms}
            self.displacement_log(self.get_positions() - pos0, parameters)

    def eigenmode_log(self):
        """Log the eigenmodes (eigenmode estimates)"""
        if self.mlogfile is not None:
            l = 'MINMODE:MODE: Optimization Step: %i\n' % \
                   (self.control.get_counter('optcount'))
            for m_num, mode in enumerate(self.eigenmodes):
                l += 'MINMODE:MODE: Order: %i\n' % m_num
                for k in range(len(mode)):
                    l += 'MINMODE:MODE: %7i %15.8f %15.8f %15.8f\n' % (k,
                         mode[k][0], mode[k][1], mode[k][2])
            self.mlogfile.write(l)
            self.mlogfile.flush()

    def displacement_log(self, displacement_vector, parameters):
        """Log the displacement"""
        if self.logfile is not None:
            lp = 'MINMODE:DISP: Parameters, different from the control:\n'
            mod_para = False
            for key in parameters:
                if parameters[key] != self.control.get_parameter(key):
                    lp += 'MINMODE:DISP: %s = %s\n' % (str(key),
                                                       str(parameters[key]))
                    mod_para = True
            if mod_para:
                l = lp
            else:
                l = ''
            for k in range(len(displacement_vector)):
                l += 'MINMODE:DISP: %7i %15.8f %15.8f %15.8f\n' % (k,
                     displacement_vector[k][0], displacement_vector[k][1],
                     displacement_vector[k][2])
            self.logfile.write(l)
            self.logfile.flush()

    def summarize(self):
        """Summarize the Minimum mode search."""
        if self.logfile is None:
            logfile = sys.stdout
        else:
            logfile = self.logfile

        c = self.control
        label = 'MINMODE:SUMMARY: '

        l = label + '-------------------------\n'
        l += label + 'Barrier: %16.4f\n' % self.get_barrier_energy()
        l += label + 'Curvature: %14.4f\n' % self.get_curvature()
        l += label + 'Optimizer steps: %8i\n' % c.get_counter('optcount')
        l += label + 'Forcecalls: %13i\n' % c.get_counter('forcecalls')
        l += label + '-------------------------\n'

        logfile.write(l)

class MinModeTranslate(Optimizer):
    """An Optimizer specifically tailored to minimum mode following."""
    def __init__(self, atoms, logfile='-', trajectory=None):
        Optimizer.__init__(self, atoms, None, logfile, trajectory)

        self.control = atoms.get_control()

        # Make a header for the log
        if self.logfile is not None:
            l = ''
            if isinstance(self.control, DimerControl):
                l = 'MinModeTranslate: STEP      TIME          ENERGY    ' + \
                    'MAX-FORCE     STEPSIZE    CURVATURE  ROT-STEPS\n'
            self.logfile.write(l)
            self.logfile.flush()

        # Load the relevant parameters from control
        self.cg_on = self.control.get_parameter('cg_translation')
        self.trial_step = self.control.get_parameter('trial_trans_step')
        self.max_step = self.control.get_parameter('maximum_translation')

        # Start conjugate gradient
        if self.cg_on:
            self.cg_init = True

    def initialize(self):
        """Set initial values."""
        self.r0 = None
        self.f0 = None

    def run(self, fmax=0.05, steps=100000000):
        """Run structure optimization algorithm.

        This method will return when the forces on all individual
        atoms are less than *fmax* or when the number of steps exceeds
        *steps*.

        """

        self.fmax = fmax
        step = 0
        while step < steps:
            f = self.atoms.get_forces()
            self.call_observers()
            if self.converged(f):
                self.log(f, None)
                return
            self.step(f)
            self.nsteps += 1
            step += 1

    def step(self, f):
        """Perform the optimization step."""
        atoms = self.atoms
        r = atoms.get_positions()
        curv = atoms.get_curvature()
        f0p = f.copy()
        r0 = r.copy()
        direction = f0p.copy()
        if self.cg_on:
            direction = self.get_cg_direction(direction)
        direction = normalize(direction)
        if curv > 0.0:
            step = direction * self.max_step
        else:
            r0t = r0 + direction * self.trial_step
            f0tp = self.atoms.get_projected_forces(r0t)
            F = np.vdot((f0tp + f0p), direction) / 2.0
            C = np.vdot((f0tp - f0p), direction) / self.trial_step
            step = ( -F / C + self.trial_step / 2.0 ) * direction
            if norm(step) > self.max_step:
                step = direction * self.max_step
        self.log(f0p, norm(step))

        atoms.set_positions(r + step)

        self.f0 = f.flat.copy()
        self.r0 = r.flat.copy()

    def get_cg_direction(self, direction):
        """Apply the Conjugate Gradient algorithm to the step direction."""
        if self.cg_init:
            self.cg_init = False
            self.direction_old = direction.copy()
            self.cg_direction = direction.copy()
        old_norm = np.vdot(self.direction_old, self.direction_old)
        # Polak-Ribiere Conjugate Gradient
        if old_norm != 0.0:
            betaPR = np.vdot(direction, (direction - self.direction_old)) / \
                     old_norm
        else:
            betaPR = 0.0
        if betaPR < 0.0:
            betaPR = 0.0
        self.cg_direction = direction + self.cg_direction * betaPR
        self.direction_old = direction.copy()
        return self.cg_direction.copy()

    def log(self, f, stepsize):
        """Log each step of the optimization."""
        if self.logfile is not None:
            T = time.localtime()
            e = self.atoms.get_potential_energy()
            fmax = sqrt((f**2).sum(axis = 1).max())
            rotsteps = self.atoms.control.get_counter('rotcount')
            curvature = self.atoms.get_curvature()
            l = ''
            if stepsize:
                if isinstance(self.control, DimerControl):
                    l = '%s: %4d  %02d:%02d:%02d %15.6f %12.4f %12.6f ' \
                        '%12.6f %10d\n' % ('MinModeTranslate', self.nsteps,
                         T[3], T[4], T[5], e, fmax, stepsize, curvature,
                         rotsteps)
            else:
                if isinstance(self.control, DimerControl):
                    l = '%s: %4d  %02d:%02d:%02d %15.6f %12.4f %s ' \
                        '%12.6f %10d\n' % ('MinModeTranslate', self.nsteps,
                         T[3], T[4], T[5], e, fmax, '    --------',
                         curvature, rotsteps)
            self.logfile.write(l)
            self.logfile.flush()

def read_eigenmode(mlog, index = -1):
    """Read an eigenmode.
    To access the pre optimization eigenmode set index = 'null'.

    """
    if isinstance(mlog, str):
        f = open(mlog, 'r')
    else:
        f = mlog

    lines = f.readlines()

    # Detect the amount of atoms and iterations
    k = 2
    while lines[k].split()[1].lower() not in ['optimization', 'order']:
        k += 1
    n = k - 2
    n_itr = (len(lines) // (n + 1)) - 2

    # Locate the correct image.
    if isinstance(index, str):
        if index.lower() == 'null':
            i = 0
        else:
            i = int(index) + 1
    else:
        if index >= 0:
            i = index + 1
        else:
            if index < -n_itr - 1:
                raise IndexError('list index out of range')
            else:
                i = index

    mode = np.ndarray(shape = (n, 3), dtype = float)
    k_atom = 0
    for k in range(1, n + 1):
        line = lines[i * (n + 1) + k].split()
        for k_dim in range(3):
            mode[k_atom][k_dim] = float(line[k_dim + 2])
        k_atom += 1

    return mode

# Aliases
DimerAtoms = MinModeAtoms
DimerTranslate = MinModeTranslate