File: colors.py

package info (click to toggle)
python-ase 3.12.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,192 kB
  • ctags: 8,112
  • sloc: python: 93,375; sh: 99; makefile: 94
file content (670 lines) | stat: -rw-r--r-- 29,785 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
from __future__ import print_function
# encoding: utf-8
"""colors.py - select how to color the atoms in the GUI."""


import gtk
from gettext import gettext as _
from ase.gui.widgets import pack, cancel_apply_ok, oops
import ase
from ase.data.colors import jmol_colors
import numpy as np
import colorsys

named_colors = ('Green', 'Yellow', 'Blue', 'Red', 'Orange', 'Cyan',
                'Magenta', 'Black', 'White', 'Grey', 'Violet', 'Brown',
                'Navy')


class ColorWindow(gtk.Window):
    "A window for selecting how to color the atoms."
    def __init__(self, gui):
        gtk.Window.__init__(self)
        self.gui = gui
        self.colormode = gui.colormode
        self.actual_colordata = None
        self.colordata = {}
        self.set_title(_("Colors"))
        vbox = gtk.VBox()
        self.add(vbox)
        vbox.show()
        # The main layout consists of two columns, the leftmost split in an upper and lower part.
        self.maintable = gtk.Table(2,2)
        pack(vbox, self.maintable)
        self.methodbox = gtk.VBox()
        self.methodbox.show()
        self.maintable.attach(self.methodbox, 0, 1, 0, 1)
        self.scalebox = gtk.VBox()
        self.scalebox.show()
        self.maintable.attach(self.scalebox, 0, 1, 1, 2)
        self.colorbox = gtk.Frame()
        self.colorbox.show()
        self.maintable.attach(self.colorbox, 1, 2, 0, 2, gtk.EXPAND)
        # Upper left: Choose how the atoms are colored.
        lbl = gtk.Label(_("Choose how the atoms are colored:"))
        pack(self.methodbox, [lbl])
        self.radio_jmol = gtk.RadioButton(None, _('By atomic number, default "jmol" colors'))
        self.radio_atno = gtk.RadioButton(self.radio_jmol,
                                          _('By atomic number, user specified'))
        self.radio_tag = gtk.RadioButton(self.radio_jmol, _('By tag'))
        self.radio_force = gtk.RadioButton(self.radio_jmol, _('By force'))
        self.radio_velocity = gtk.RadioButton(self.radio_jmol, _('By velocity'))
        self.radio_charge = gtk.RadioButton(self.radio_jmol, _('By charge'))
        self.radio_magnetic_moment = gtk.RadioButton(
            self.radio_jmol, _('By magnetic moment'))
        self.radio_coordination = gtk.RadioButton(
            self.radio_jmol, _('By coordination'))
        self.radio_manual = gtk.RadioButton(self.radio_jmol, _('Manually specified'))
        self.radio_same = gtk.RadioButton(self.radio_jmol, _('All the same color'))
        self.force_box = gtk.VBox()
        self.velocity_box = gtk.VBox()
        self.charge_box = gtk.VBox()
        self.magnetic_moment_box = gtk.VBox()
        for widget in (self.radio_jmol, self.radio_atno, self.radio_tag,
                       self.radio_force, self.force_box, 
                       self.radio_velocity, self.velocity_box, 
                       self.radio_charge, self.charge_box,
                       self.radio_magnetic_moment,
                       self.magnetic_moment_box,
                       self.radio_coordination,
                       self.radio_manual, self.radio_same):
            pack(self.methodbox, [widget])
            if isinstance(widget, gtk.RadioButton):
                widget.connect('toggled', self.method_radio_changed)
        # Now fill in the box for additional information in case the force is used.
        self.force_label = gtk.Label(_("This should not be displayed in forces!"))
        pack(self.force_box, [self.force_label])
        self.min = gtk.Adjustment(0.0, -100.0, 100.0, 0.05)
        self.max = gtk.Adjustment(0.0, -100.0, 100.0, 0.05)
        self.steps = gtk.Adjustment(10, 2, 500, 1)
        force_apply = gtk.Button(_('Update'))
        force_apply.connect('clicked', self.set_min_max_colors, 'force')
        pack(self.force_box, [gtk.Label(_('Min: ')),
                              gtk.SpinButton(self.min, 1.0, 2),
                              gtk.Label(_('  Max: ')),
                              gtk.SpinButton(self.max, 1.0, 2),
                              gtk.Label(_('  Steps: ')),
                              gtk.SpinButton(self.steps, 1, 0),
                              gtk.Label('  '),
                              force_apply])
        self.force_box.hide()
        # Now fill in the box for additional information in case the velocity is used.
        self.velocity_label = gtk.Label("This should not be displayed!")
        pack(self.velocity_box, [self.velocity_label])
        velocity_apply = gtk.Button(_('Update'))
        velocity_apply.connect('clicked', self.set_min_max_colors, 'velocity')
        pack(self.velocity_box, [gtk.Label(_('Min: ')),
                                 gtk.SpinButton(self.min, 1.0, 3),
                                 gtk.Label(_('  Max: ')),
                                 gtk.SpinButton(self.max, 1.0, 3),
                                 gtk.Label(_('  Steps: ')),
                                 gtk.SpinButton(self.steps, 1, 0),
                                 gtk.Label('  '),
                                 velocity_apply])
        self.velocity_box.hide()
        # Now fill in the box for additional information in case
        # the charge is used.
        self.charge_label = gtk.Label(_("This should not be displayed!"))
        pack(self.charge_box, [self.charge_label])
        charge_apply = gtk.Button(_('Update'))
        charge_apply.connect('clicked', self.set_min_max_colors, 'charge')
        pack(self.charge_box, [gtk.Label(_('Min: ')),
                              gtk.SpinButton(self.min, 10.0, 2),
                              gtk.Label(_('  Max: ')),
                              gtk.SpinButton(self.max, 10.0, 2),
                              gtk.Label(_('  Steps: ')),
                              gtk.SpinButton(self.steps, 1, 0),
                              gtk.Label('  '),
                              charge_apply])
        self.charge_box.hide()
        # Now fill in the box for additional information in case
        # the magnetic moment is used.
        self.magnetic_moment_label = gtk.Label(_(
            "This should not be displayed!"))
        pack(self.magnetic_moment_box, [self.magnetic_moment_label])
        magnetic_moment_apply = gtk.Button(_('Update'))
        magnetic_moment_apply.connect('clicked', self.set_min_max_colors,
                                      'magnetic moment')
        pack(self.magnetic_moment_box, [gtk.Label(_('Min: ')),
                                        gtk.SpinButton(self.min, 10.0, 2),
                                        gtk.Label(_('  Max: ')),
                                        gtk.SpinButton(self.max, 10.0, 2),
                                        gtk.Label(_('  Steps: ')),
                                        gtk.SpinButton(self.steps, 1, 0),
                                        gtk.Label('  '),
                                        magnetic_moment_apply])
        self.magnetic_moment_box.hide()
        # Lower left: Create a color scale
        pack(self.scalebox, gtk.Label(""))
        lbl = gtk.Label(_('Create a color scale:'))
        pack(self.scalebox, [lbl])
        color_scales = (
            _('Black - white'),
            _('Black - red - yellow - white'),
            _('Black - green - white'),
            _('Black - blue - cyan'),
            _('Blue - white - red'),
            _('Hue'),
            _('Named colors')
            )
        self.scaletype_created = None
        self.scaletype = gtk.combo_box_new_text()
        for s in color_scales:
            self.scaletype.append_text(s)
        self.createscale = gtk.Button(_("Create"))
        pack(self.scalebox, [self.scaletype, self.createscale])
        self.createscale.connect('clicked', self.create_color_scale)
        # The actually colors are specified in a box possibly with scrollbars
        self.colorwin = gtk.ScrolledWindow()
        self.colorwin.set_policy(gtk.POLICY_NEVER, gtk.POLICY_AUTOMATIC)
        self.colorwin.show()
        self.colorbox.add(self.colorwin)
        self.colorwin.add_with_viewport(gtk.VBox()) # Dummy contents
        buts = cancel_apply_ok(cancel=lambda widget: self.destroy(),
                               apply=self.apply,
                               ok=self.ok)
        pack(vbox, [buts], end=True, bottom=True)
        # Make the initial setup of the colors
        self.color_errors = {}
        self.init_colors_from_gui()
        self.show()
        gui.register_vulnerable(self)

    def notify_atoms_changed(self):
        "Called by gui object when the atoms have changed."
        self.destroy()
  
    def init_colors_from_gui(self):
        cm = self.gui.colormode
        # Disallow methods if corresponding data is not available
        if not self.gui.images.T.any():
            self.radio_tag.set_sensitive(False)
            if self.radio_tag.get_active() or cm == 'tag':
                self.radio_jmol.set_active(True)
                return
        else:
            self.radio_tag.set_sensitive(True)
        if np.isnan(self.gui.images.F).any() or not self.gui.images.F.any():
            self.radio_force.set_sensitive(False)
            if self.radio_force.get_active() or cm == 'force':
                self.radio_jmol.set_active(True)
                return
        else:
            self.radio_force.set_sensitive(True)
        if np.isnan(self.gui.images.V).any() or not self.gui.images.V.any():
            self.radio_velocity.set_sensitive(False)
            if self.radio_velocity.get_active() or cm == 'velocity':
                self.radio_jmol.set_active(True)
                return
        else:
            self.radio_velocity.set_sensitive(True)
        if not self.gui.images.q.any():
            self.radio_charge.set_sensitive(False)
        else:
            self.radio_charge.set_sensitive(True)
        if not self.gui.images.M.any():
            self.radio_magnetic_moment.set_sensitive(False)
        else:
            self.radio_magnetic_moment.set_sensitive(True)
        self.radio_manual.set_sensitive(self.gui.images.natoms <= 1000)
        # Now check what the current color mode is
        if cm == 'jmol':
            self.radio_jmol.set_active(True)
            self.set_jmol_colors()
        elif cm == 'atno':
            self.radio_atno.set_active(True)
        elif cm == 'tags':
            self.radio_tag.set_active(True)
        elif cm == 'force':
            self.radio_force.set_active(True)
        elif cm == 'velocity':
            self.radio_velocity.set_active(True)
        elif cm == 'charge':
            self.radio_charge.set_active(True)
        elif cm == 'magnetic moment':
            self.radio_magnetic_moment.set_active(True)
        elif cm == 'coordination':
            self.radio_coordination.set_active(True)
        elif cm == 'manual':
            self.radio_manual.set_active(True)
        elif cm == 'same':
            self.radio_same.set_active(True)
            
    def method_radio_changed(self, widget=None):
        "Called when a radio button is changed."
        self.scaletype_created = None
        self.scaletype.set_active(-1)
        if not widget.get_active():
            # Ignore most events when a button is turned off.
            if widget is self.radio_force:
                self.force_box.hide()
            if widget is self.radio_velocity:
                self.velocity_box.hide()
            if widget is self.radio_charge:
                self.charge_box.hide()
            return
        if widget is self.radio_jmol:
            self.set_jmol_colors()
        elif widget is self.radio_atno:
            self.set_atno_colors()
        elif widget is self.radio_tag:
            self.set_tag_colors()
        elif widget is self.radio_force:
            self.show_force_stuff()
            self.set_min_max_colors(None, 'force')
        elif widget is self.radio_velocity:
            self.show_velocity_stuff()
            self.set_min_max_colors(None, 'velocity')
        elif widget is self.radio_charge:
            self.show_charge_stuff()
            self.set_min_max_colors(None, 'charge')
        elif widget is self.radio_magnetic_moment:
            self.show_magnetic_moment_stuff()
            self.set_min_max_colors(None, 'magnetic moment')
        elif widget is self.radio_coordination:
            self.set_coordination_colors()
        elif widget is self.radio_manual:
            self.set_manual_colors()
        elif widget is self.radio_same:
            self.set_same_color()
        else:
            raise RuntimeError('Unknown widget in method_radio_changed')
            
    def make_jmol_colors(self):
        "Set the colors to the default jmol colors"
        self.colordata_z = []
        hasfound = {}
        for z in self.gui.images.Z:
            if z not in hasfound:
                hasfound[z] = True
                self.colordata_z.append([z, jmol_colors[z]])

    def set_jmol_colors(self):
        "We use the immutable jmol colors."
        self.make_jmol_colors()
        self.set_atno_colors()
        for entry in self.color_entries:
            entry.set_sensitive(False)
        self.colormode = 'jmol'
        
    def set_atno_colors(self):
        "We use user-specified per-element colors."
        if not hasattr(self, 'colordata_z'):
            # No initial colors.  Use jmol colors
            self.make_jmol_colors()
        self.actual_colordata = self.colordata_z
        self.color_labels = ["%i (%s):" % (z, ase.data.chemical_symbols[z])
                             for z, col in self.colordata_z]
        self.make_colorwin()
        self.colormode = 'atno'

    def set_tag_colors(self):
        "We use per-tag colors."
        # Find which tags are in use
        tags = self.gui.images.T
        existingtags = range(tags.min(), tags.max() + 1)
        if not hasattr(self, 'colordata_tags') or len(self.colordata_tags) != len(existingtags):
            colors = self.get_named_colors(len(existingtags))
            self.colordata_tags = [[x, y] for x, y in
                                   zip(existingtags, colors)]
        self.actual_colordata = self.colordata_tags
        self.color_labels = [str(x)+':' for x, y in self.colordata_tags]
        self.make_colorwin()
        self.colormode = 'tags'

    def set_same_color(self):
        "All atoms have the same color"
        if not hasattr(self, 'colordata_same'):
            try:
                self.colordata_same = self.actual_colordata[0:1]
            except AttributeError:
                self.colordata_same = self.get_named_colors(1)
        self.actual_colordata = self.colordata_same
        self.actual_colordata[0][0] = 0
        self.color_labels = ['all:']
        self.make_colorwin()
        self.colormode = 'same'

    def set_min_max_colors(self, widget, mode):
        borders = np.linspace(self.min.value, self.max.value, self.steps.value,
                              endpoint=False)
        if self.scaletype_created is None:
            colors = self.new_color_scale([[0, [1,1,1]],
                                           [1, [0,0,1]]], len(borders))
        elif (mode not in  self.colordata or
              len(self.colordata[mode]) != len(borders)):
            colors = self.get_color_scale(len(borders), self.scaletype_created)
        else:
            colors = [y for x, y in self.colordata[mode]]
        self.colordata[mode] = [[x, y] for x, y in zip(borders, colors)]
        self.actual_colordata = self.colordata[mode]
        self.color_labels = ["%.2f:" % x for x, y in self.colordata[mode]]
        self.make_colorwin()
        self.colormode = mode
        factor = self.steps.value / (self.max.value - self.min.value)
        self.colormode_data = (self.min.value, factor)

    def set_coordination_colors(self, *args):
        "Use coordination as basis for the colors."
        if not hasattr(self.gui, 'coordination'):
            self.gui.toggle_show_bonds(None)
        if not hasattr(self, 'colordata_coordination'):
            colors = self.get_named_colors(len(named_colors))
            self.colordata_coordination = [[x, y] for x, y in
                                           enumerate(colors)]
        self.actual_colordata = self.colordata_coordination
        self.color_labels = [(str(x) + ':')
                             for x, y in self.colordata_coordination]
        self.make_colorwin()
        self.colormode = 'coordination'

    def set_manual_colors(self):
        "Set colors of all atoms from the last selection."
        # We cannot directly make np.arrays of the colors, as they may
        # be sequences of the same length, causing creation of a 2D
        # array of characters/numbers instead of a 1D array of
        # objects.
        colors = np.array([None] * self.gui.images.natoms)
        if self.colormode in ['atno', 'jmol', 'tags']:
            maxval = max([x for x, y in self.actual_colordata])
            oldcolors = np.array([None] * (maxval+1))
            for x, y in self.actual_colordata:
                oldcolors[x] = y
            if self.colormode == 'tags':
                colors[:] = oldcolors[self.gui.images.T[self.gui.frame]]
            else:
                colors[:] = oldcolors[self.gui.images.Z]
        elif self.colormode == 'force':
            oldcolors = np.array([None] * len(self.actual_colordata))
            oldcolors[:] = [y for x, y in self.actual_colordata]
            F = self.gui.images.F[self.gui.frame]
            F = np.sqrt((F * F).sum(axis=-1))
            nF = (F - self.colormode_force_data[0]) * self.colormode_force_data[1]
            nF = np.clip(nF.astype(int), 0, len(oldcolors)-1)
            colors[:] = oldcolors[nF]
        elif self.colormode == 'velocity':
            oldcolors = np.array([None] * len(self.actual_colordata))
            oldcolors[:] = [y for x, y in self.actual_colordata]
            V = self.gui.images.V[self.gui.frame]
            V = np.sqrt((V * V).sum(axis=-1))
            nV = (V - self.colormode_velocity_data[0]) * self.colormode_velocity_data[1]
            nV = np.clip(nV.astype(int), 0, len(oldcolors)-1)
            colors[:] = oldcolors[nV]
        elif self.colormode == 'charge':
            oldcolors = np.array([None] * len(self.actual_colordata))
            oldcolors[:] = [y for x, y in self.actual_colordata]
            q = self.gui.images.q[self.gui.frame]
            nq = ((q - self.colormode_charge_data[0]) *
                  self.colormode_charge_data[1])
            nq = np.clip(nq.astype(int), 0, len(oldcolors)-1)
            colors[:] = oldcolors[nq]
        elif self.colormode == 'magnetic moment':
            oldcolors = np.array([None] * len(self.actual_colordata))
            oldcolors[:] = [y for x, y in self.actual_colordata]
            q = self.gui.images.q[self.gui.frame]
            nq = ((q - self.colormode_magnetic_moment_data[0]) *
                  self.colormode_magnetic_moment_data[1])
            nq = np.clip(nq.astype(int), 0, len(oldcolors)-1)
            colors[:] = oldcolors[nq]
        elif self.colormode == 'coordination':
            oldcolors = np.array([None] * len(self.actual_colordata))
            oldcolors[:] = [y for x, y in self.actual_colordata]
        elif self.colormode == 'same':
            oldcolor = self.actual_colordata[0][1]
            if len(colors) == len(oldcolor):
                # Direct assignment would be e.g. one letter per atom. :-(
                colors[:] = [oldcolor] * len(colors)
            else:
                colors[:] = oldcolor
        elif self.colormode == 'manual':
            if self.actual_colordata is None:   # import colors from gui, if they don't exist already
                colors = [y for x,y in self.gui.colordata]

        self.color_labels = ["%d:" % i for i in range(len(colors))]
        self.actual_colordata = [[i, x] for i, x in enumerate(colors)]
        self.make_colorwin()
        self.colormode = 'manual'

    def get_min_max_text(self, mode, vmin, vmax, min_frame, max_frame):
        nimages = self.gui.images.nimages
        txt = 'Max {0}: {1:.2f}'.format(mode, vmax)
        if nimages > 1:
            txt += '(all frames), {0:.2f} (this frame)'.format(max_frame)
        self.max.value = vmax
        if vmin is None:
            self.min.value = 0.
        else:
            txt += ', Min {0:.2f}'.format(vmin)
            if nimages > 1:
                txt += '(all frames), {0:.2f} (this frame)'.format(min_frame)
            self.min.value = vmin
        return txt

    def show_force_stuff(self):
        "Show and update widgets needed for selecting the force scale."
        self.force_box.show()
        # XXX is this projected on some axis ? XXX
        F = np.sqrt(((self.gui.images.F *
                      self.gui.images.dynamic[:,np.newaxis])**2).sum(axis=-1))
        txt = self.get_min_max_text(
            'force', None, F.max(),
            None, self.gui.images.F[self.gui.frame].max())
        self.force_label.set_text(_(txt))

    def show_velocity_stuff(self):
        "Show and update widgets needed for selecting the velocity scale."
        self.velocity_box.show()
        V = np.sqrt((self.gui.images.V * self.gui.images.V).sum(axis=-1))
        Vframe = np.sqrt((self.gui.images.V[self.gui.frame] *
                          self.gui.images.V[self.gui.frame]).sum(axis=-1))
        txt = self.get_min_max_text(
            'velocity', None, V.max(), None, Vframe.max())
        self.velocity_label.set_text(_(txt))

    def show_charge_stuff(self):
        "Show and update widgets needed for selecting the charge scale."
        self.charge_box.show()
        txt = self.get_min_max_text(
            'charge', self.gui.images.q.min(), self.gui.images.q.max(),
            self.gui.images.q[self.gui.frame].min(),
            self.gui.images.q[self.gui.frame].max())
        self.charge_label.set_text(_(txt))

    def show_magnetic_moment_stuff(self):
        "Show and update widgets needed for selecting the magn. mom. scale."
        self.magnetic_moment_box.show()
        txt = self.get_min_max_text(
            'magnetic moment', self.gui.images.M.min(), self.gui.images.M.max(),
            self.gui.images.M[self.gui.frame].min(),
            self.gui.images.M[self.gui.frame].max())
        self.magnetic_moment_label.set_text(_(txt))

    def make_colorwin(self):
        """Make the list of editable color entries.

        Uses self.actual_colordata and self.color_labels.  Produces self.color_entries.
        """
        assert len(self.actual_colordata) == len(self.color_labels)
        self.color_entries = []
        old = self.colorwin.get_child()
        self.colorwin.remove(old)
        del old
        table = gtk.Table(len(self.actual_colordata)+1, 4)
        self.colorwin.add_with_viewport(table)
        table.show()
        self.color_display = []
        for i in range(len(self.actual_colordata)):
            lbl = gtk.Label(self.color_labels[i])
            entry = gtk.Entry(max=20)
            val = self.actual_colordata[i][1]
            error = False
            if not isinstance(val, str):
                assert len(val) == 3
                intval = tuple(np.round(65535*np.array(val)).astype(int))
                val = "%.3f, %.3f, %.3f" % tuple(val)
                clr = gtk.gdk.Color(*intval)
            else:
                try:
                    clr = gtk.gdk.color_parse(val)
                except ValueError:
                    error = True
            entry.set_text(val)
            blob = gtk.EventBox()
            space = gtk.Label
            space = gtk.Label("    ")
            space.show()
            blob.add(space)
            if error:
                space.set_text(_("ERROR"))
            else:
                blob.modify_bg(gtk.STATE_NORMAL, clr)
            table.attach(lbl, 0, 1, i, i+1, yoptions=0)
            table.attach(entry, 1, 2, i, i+1, yoptions=0)
            table.attach(blob, 2, 3, i, i+1, yoptions=0)
            lbl.show()
            entry.show()
            blob.show()
            entry.connect('changed', self.entry_changed, i)
            self.color_display.append(blob)
            self.color_entries.append(entry)
            
    def entry_changed(self, widget, index):
        """The user has changed a color."""
        txt = widget.get_text()
        txtfields = txt.split(',')
        if len(txtfields) == 3:
            self.actual_colordata[index][1] = [float(x) for x in txtfields]
            val = tuple([int(65535*float(x)) for x in txtfields])
            clr = gtk.gdk.Color(*val)
        else:
            self.actual_colordata[index][1] = txt
            try:
                clr = gtk.gdk.color_parse(txt)
            except ValueError:
                # Cannot parse the color
                displ = self.color_display[index]
                displ.modify_bg(gtk.STATE_NORMAL, gtk.gdk.color_parse('white'))
                displ.get_child().set_text(_("ERR"))
                self.color_errors[index] = (self.color_labels[index], txt)
                return
        self.color_display[index].get_child().set_text("    ") # Clear error message
        self.color_errors.pop(index, None)
        self.color_display[index].modify_bg(gtk.STATE_NORMAL, clr)
        
    def create_color_scale(self, *args):
        if self.radio_jmol.get_active():
            self.radio_atno.set_active(1)
        n = len(self.color_entries)
        s = self.scaletype.get_active()
        scale = self.get_color_scale(n, s)
        self.scaletype_created = s
        for i in range(n):
            if isinstance(scale[i], str):
                self.color_entries[i].set_text(scale[i])
            else:
                s = "%.3f, %.3f, %.3f" % tuple(scale[i])
                self.color_entries[i].set_text(s)
            self.color_entries[i].activate()

    def get_color_scale(self, n, s):
        if s == 0:
            # Black - White
            scale = self.new_color_scale([[0, [0,0,0]],
                                          [1, [1,1,1]]], n)
        elif s == 1:
            # Black - Red - Yellow - White (STM colors)
            scale = self.new_color_scale([[0, [0,0,0]],
                                          [0.33, [1,0,0]],
                                          [0.67, [1,1,0]],
                                          [1, [1,1,1]]], n)
        elif s == 2:
            # Black - Green - White
            scale = self.new_color_scale([[0, [0,0,0]],
                                          [0.5, [0,0.9,0]],
                                          [0.75, [0.2,1.0,0.2]],
                                          [1, [1,1,1]]], n)
        elif s == 3:
            # Black - Blue - Cyan
            scale = self.new_color_scale([[0, [0,0,0]],
                                          [0.5, [0,0,1]],
                                          [1, [0,1,1]]], n)
        elif s == 4:
            # Blue - White - Red
             scale = self.new_color_scale([[0, [0,0,1]],
                                          [0.5, [1,1,1]],
                                          [1, [1,0,0]]], n)
        elif s == 5:
            # Hues
            hues = np.linspace(0.0, 1.0, n, endpoint=False)
            scale = ["%.3f, %.3f, %.3f" % colorsys.hls_to_rgb(h, 0.5, 1)
                     for h in hues]
        elif s == 6:
            # Named colors
            scale = self.get_named_colors(n)
        else:
            scale = None
        return scale

    def new_color_scale(self, fixpoints, n):
        "Create a homogeneous color scale."
        x = np.array([a[0] for a in fixpoints], float)
        y = np.array([a[1] for a in fixpoints], float)
        assert y.shape[1] == 3
        res = []
        for a in np.linspace(0.0, 1.0, n, endpoint=True):
            n = x.searchsorted(a)
            if n == 0:
                v = y[0]  # Before the start
            elif n == len(x):
                v = x[-1] # After the end
            else:
                x0 = x[n-1]
                x1 = x[n]
                y0 = y[n-1]
                y1 = y[n]
                v = y0 + (y1 - y0) / (x1 - x0) * (a - x0)
            res.append(v)
        return res

    def get_named_colors(self, n):
        if n <= len(named_colors):
            return named_colors[:n]
        else:
            return named_colors + ('Black',) * (n - len(named_colors))
        
    def apply(self, *args):
        #if self.colormode in ['atno', 'jmol', 'tags']:
        # Color atoms according to an integer value number
        if self.color_errors:
            oops(_("Incorrect color specification"),
                 "%s: %s" % self.color_errors.values()[0])
            return False
        colordata = self.actual_colordata
        if self.colormode in [
                'force', 'velocity', 'charge', 'magnetic moment']:
            # Use integers instead for border values
            colordata = [[i, x[1]] for i, x in enumerate(self.actual_colordata)]
            self.gui.colormode_data = self.colormode_data
        maxval = max([x for x, y in colordata])
        self.gui.colors = [None] * (maxval + 1)
        new = self.gui.drawing_area.window.new_gc
        alloc = self.gui.colormap.alloc_color
        for z, val in colordata:
            if isinstance(val, str):
                self.gui.colors[z] = new(alloc(val))
            else:
                clr = tuple([int(65535*x) for x in val])
                assert len(clr) == 3
                self.gui.colors[z] = new(alloc(*clr))
        self.gui.colormode = self.colormode
        self.gui.colordata = colordata
        self.gui.draw()
        return True

    def cancel(self, *args):
        self.destroy()

    def ok(self, *args):
        if self.apply():
            self.destroy()