File: castep.py

package info (click to toggle)
python-ase 3.12.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,192 kB
  • ctags: 8,112
  • sloc: python: 93,375; sh: 99; makefile: 94
file content (1327 lines) | stat: -rw-r--r-- 51,270 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
from __future__ import print_function
# -*- coding: utf-8 -*-
"""This module defines I/O routines with CASTEP files.
The key idea is that all function accept or return  atoms objects.
CASTEP specific parameters will be returned through the <atoms>.calc
attribute.
"""
import os
import re
import numpy as np

import ase
from ase.spacegroup import Spacegroup
from ase.constraints import FixAtoms, FixCartesian, FixedLine
from ase.parallel import paropen

# independent unit management included here:
# When high accuracy is required, this allows to easily pin down
# unit conversion factors from different "unit definition systems"
# (CODATA1986 for ase-3.6.0.2515 vs CODATA2002 for CASTEP 5.01).
#
# ase.units in in ase-3.6.0.2515 is based on CODATA1986
import ase.units
units_ase = {
    'hbar': ase.units._hbar * ase.units.J,
    'Eh': ase.units.Hartree,
    'kB': ase.units.kB,
    'a0': ase.units.Bohr,
    't0': ase.units._hbar * ase.units.J / ase.units.Hartree,
    'c': ase.units._c,
    'me': ase.units._me / ase.units._amu,
    'Pascal': 1.0 / ase.units.Pascal}

# CODATA1986 (included herein for the sake of completeness)
# taken from
#    http://physics.nist.gov/cuu/Archive/1986RMP.pdf
units_CODATA1986 = {
    'hbar': 6.5821220E-16,      # eVs
    'Eh': 27.2113961,           # eV
    'kB': 8.617385E-5,          # eV/K
    'a0': 0.529177249,          # A
    'c': 299792458,             # m/s
    'e': 1.60217733E-19,        # C
    'me': 5.485799110E-4}       # u

# CODATA2002: default in CASTEP 5.01
# (-> check in more recent CASTEP in case of numerical discrepancies?!)
# taken from
#    http://physics.nist.gov/cuu/Document/all_2002.pdf
units_CODATA2002 = {
    'hbar': 6.58211915E-16,     # eVs
    'Eh': 27.2113845,           # eV
    'kB': 8.617343E-5,          # eV/K
    'a0': 0.5291772108,         # A
    'c': 299792458,             # m/s
    'e': 1.60217653E-19,        # C
    'me': 5.4857990945E-4}      # u

# (common) derived entries
for d in (units_CODATA1986, units_CODATA2002):
    d['t0'] = d['hbar'] / d['Eh']     # s
    d['Pascal'] = d['e'] * 1E30       # Pa


__all__ = [
    # routines for the generic io function
    'read_castep',
    'read_castep_castep',
    'read_castep_new',
    'read_cell',
    'read_castep_cell',
    'read_geom',
    'read_castep_geom',
    'read_phonon',
    'read_castep_phonon',
    # additional reads that still need to be wrapped
    'read_md',
    'read_param',
    'read_seed',
    # write that is already wrapped
    'write_castep_cell',
    # param write - in principle only necessary in junction with the calculator
    'write_param']


def write_cell(filename, atoms, positions_frac=False, castep_cell=None,
               force_write=False):
    """
    Wrapper function for the more generic write() functionality.

    Note that this is function is intended to maintain backwards-compatibility
    only.
    """
    from ase.io import write

    write(filename, atoms, positions_frac=positions_frac,
          castep_cell=castep_cell, force_write=force_write)


def write_castep_cell(fd, atoms, positions_frac=False, castep_cell=None,
                      force_write=False):
    """
    This CASTEP export function write minimal information to
    a .cell file. If the atoms object is a trajectory, it will
    take the last image.

    Note that function has been altered in order to require a filedescriptor
    rather than a filename. This allows to use the more generic write()
    function from formats.py

    Note that the "force_write" keywords has no effect currently.
    """
    if atoms is None:
        print('Atoms object not initialized')
        return False
    if isinstance(atoms, list):
        if len(atoms) > 1:
            atoms = atoms[-1]

# deprecated; should be handled on the more generic write() level
#    if os.path.isfile(filename) and not force_write:
#        print('ase.io.castep.write_param: Set optional argument')
#        print('force_write=True to overwrite %s.' % filename)
#        return False

#    fd = open(filename, 'w')
    fd.write('#######################################################\n')
    fd.write('#CASTEP cell file: %s\n' % fd.name)
    fd.write('#Created using the Atomic Simulation Environment (ASE)#\n')
    fd.write('#######################################################\n\n')
    fd.write('%BLOCK LATTICE_CART\n')
    cell = np.matrix(atoms.get_cell())
    for line in atoms.get_cell():
        fd.write('    %.10f %.10f %.10f\n' % tuple(line))
    fd.write('%ENDBLOCK LATTICE_CART\n\n\n')

    if positions_frac:
        keyword = 'POSITIONS_FRAC'
        positions = np.array(atoms.get_positions() * cell.I)

    else:
        keyword = 'POSITIONS_ABS'
        positions = atoms.get_positions()

    if (hasattr(atoms, 'calc') and
            hasattr(atoms.calc, 'param') and
            hasattr(atoms.calc.param, 'task')):
        _spin_pol = any([getattr(atoms.calc.param, i).value
                         for i in ['spin_polarized', 'spin_polarised']])
    else:
        _spin_pol = True

    # Gather the data that will be used to generate the block
    pos_block_data = []
    pos_block_format = '%s %8.6f %8.6f %8.6f'
    if atoms.has('castep_custom_species'):
        pos_block_data.append(atoms.get_array('castep_custom_species'))
    else:
        pos_block_data.append(atoms.get_chemical_symbols())
    pos_block_data += [xlist for xlist in zip(*positions)]
    if atoms.get_initial_magnetic_moments().any() and _spin_pol:
        pos_block_data.append(atoms.get_initial_magnetic_moments())
        pos_block_format += ' SPIN=%4.2f'

    pos_block = [(pos_block_format %
                  line_data) for line_data
                 in zip(*pos_block_data)]

    # Adding the CASTEP labels output
    if atoms.has('castep_labels'):
        labels = atoms.get_array('castep_labels')
        for l_i, label in enumerate(labels):
            # avoid empty labels that crash CASTEP runs
            if label and label != 'NULL':
                pos_block[l_i] += ' LABEL=%s' % label

    fd.write('%%BLOCK %s\n' % keyword)
    for line in pos_block:
        fd.write('    %s\n' % line)
    fd.write('%%ENDBLOCK %s\n\n' % keyword)

    # if atoms, has a CASTEP calculator attached, then only
    # write constraints if really necessary
    if (hasattr(atoms, 'calc') and
            hasattr(atoms.calc, 'param') and
            hasattr(atoms.calc.param, 'task')):
        task = atoms.calc.param.task
        if atoms.calc.param.task.value is None:
            suppress_constraints = True
        elif task.value.lower() not in [
                'geometryoptimization',
                # well, CASTEP understands US and UK english...
                'geometryoptimisation',
                'moleculardynamics',
                'transitionstatesearch',
                'phonon']:
            suppress_constraints = True
        else:
            suppress_constraints = False
    else:
        suppress_constraints = True

    constraints = atoms.constraints
    if len(constraints) and not suppress_constraints:
        fd.write('%BLOCK IONIC_CONSTRAINTS \n')
        count = 0
        for constr in constraints:
            if (not isinstance(constr, FixAtoms) and
                    not isinstance(constr, FixCartesian) and
                    not isinstance(constr, FixedLine) and
                    not suppress_constraints):
                print('Warning: you have constraints in your atoms, that are')
                print('         not supported by the CASTEP ase interface')
                break
            if isinstance(constr, FixAtoms):
                # sorry, for this complicated block
                # reason is that constraint.index can either
                # hold booleans or integers and in both cases
                # it is an numpy array, so no simple comparison works
                for n, val in enumerate(constr.index):
                    if val.dtype.name.startswith('bool'):
                        if not val:
                            continue
                        symbol = atoms.get_chemical_symbols()[n]
                        nis = atoms.calc._get_number_in_species(n)
                    elif val.dtype.name.startswith('int'):
                        symbol = atoms.get_chemical_symbols()[val]
                        nis = atoms.calc._get_number_in_species(val)
                    else:
                        raise UserWarning('Unrecognized index in' +
                                          ' constraint %s' % constr)
                    fd.write('%6d %3s %3d   1 0 0 \n' % (count + 1,
                                                         symbol,
                                                         nis))
                    fd.write('%6d %3s %3d   0 1 0 \n' % (count + 2,
                                                         symbol,
                                                         nis))
                    fd.write('%6d %3s %3d   0 0 1 \n' % (count + 3,
                                                         symbol,
                                                         nis))
                    count += 3
            elif isinstance(constr, FixCartesian):
                n = constr.a
                symbol = atoms.get_chemical_symbols()[n]
                nis = atoms.calc._get_number_in_species(n)
                # fix_cart = - constr.mask + 1
                # just use the logical opposite
                fix_cart = np.logical_not(constr.mask)
                if fix_cart[0]:
                    count += 1
                    fd.write('%6d %3s %3d   1 0 0 \n' % (count, symbol, nis))
                if fix_cart[1]:
                    count += 1
                    fd.write('%6d %3s %3d   0 1 0 \n' % (count, symbol, nis))
                if fix_cart[2]:
                    count += 1
                    fd.write('%6d %3s %3d   0 0 1 \n' % (count, symbol, nis))
            elif isinstance(constr, FixedLine):
                n = constr.a
                symbol = atoms.get_chemical_symbols()[n]
                nis = atoms.calc._get_number_in_species(n)
                direction = constr.dir
                # print(direction)
                ((i1, v1), (i2, v2)) = sorted(enumerate(direction),
                                              key=lambda x: abs(x[1]),
                                              reverse=True)[:2]
                # print(sorted(enumerate(direction), key = lambda x:x[1])[:2])
                # print(sorted(enumerate(direction), key = lambda x:x[1]))

                # print(v1)
                # print(v2)
                n1 = np.array([v2, v1, 0])
                n1 = n1 / np.linalg.norm(n1)

                n2 = np.cross(direction, n1)
                count += 1
                fd.write('%6d %3s %3d   %f %f %f \n' % (count, symbol, nis,
                                                        n1[0], n1[1], n1[2]))

                count += 1
                fd.write('%6d %3s %3d   %f %f %f \n' % (count, symbol, nis,
                                                        n2[0], n2[1], n2[2]))
        fd.write('%ENDBLOCK IONIC_CONSTRAINTS \n')

    if castep_cell is None:
        if hasattr(atoms, 'calc') and hasattr(atoms.calc, 'cell'):
            castep_cell = atoms.calc.cell
        else:
            # fd.close()
            return True

    for option in castep_cell._options.values():
        if option.value is not None:
            #            print(option.value)
            if option.type == 'Block':
                fd.write('%%BLOCK %s\n' % option.keyword.upper())
                fd.write(option.value)
                fd.write('\n%%ENDBLOCK %s\n\n' % option.keyword.upper())
            else:
                fd.write('%s : %s\n\n' % (option.keyword.upper(),
                                          option.value))

#    fd.close()
    return True


def read_cell(filename, index=None):
    """
    Wrapper function for the more generic read() functionality.

    Note that this is function is intended to maintain backwards-compatibility
    only.
    """
    from ase.io import read
    return read(filename, index=index, format='castep-cell')


def read_castep_cell(fd, index=None):
    """Read a .cell file and return an atoms object.
    Any value found that does not fit the atoms API
    will be stored in the atoms.calc attribute.

    This routine has been modified to also be able to read *.cell files even if
    there is no CASTEP installation or castep_keywords.py available. We wil
    then make use of a fallback-mode which basically just read atoms positions
    and unit cell information. This can very highly useful for visualization
    using the ASE gui.
    """

    from ase.calculators.castep import Castep

    _fallback = False
    try:
        calc = Castep()
    except Exception as exception:
        print('read_cell: Warning - Was not able to initialize CASTEP '
              'calculator.')
        print('           This may be due to a non-existing '
              '"castep.keywords.py"')
        print('           file or a non-existing CASTEP installation.')
        print('           Original error message appears below:')
        print('')
        print(' ' * 11 + exception.__str__().replace('\n', '\n' + ' ' * 11))
        print('')
        print(
            '           Fallback-mode will be applied to provide at least the')
        print('           geometric information contained in the *.cell file.')
        calc = None
        _fallback = True

    # fd will be closed by embracing read() routine
    lines = fd.readlines()

    def get_tokens(lines, l, maxsplit=0, has_species=False):
        """Tokenizes one line of a *cell file."""
        comment_chars = '#!;'
        separator_re = '[\s=:]+'
        while l < len(lines):
            line = lines[l].strip()
            if len(line) == 0 or line[0] in comment_chars:
                l += 1
                continue
            else:
                # Remove comments
                line = re.split('[{0}]+'.format(comment_chars), line, 1)[0]
                # Tokenize
                # If we expect a species symbol to be in there, we take it out
                # first:
                if has_species:
                    species, line = line.split(None, 1)
                    tokens = [species]
                else:
                    tokens = []
                tokens += re.split(separator_re, line.strip(), maxsplit)
                return tokens, l + 1
        tokens = ''

    # This print statement is definitely not necessary
    #    print("read_cell: Warning - get_tokens has not found any more tokens")
        return tokens, l

    lat = []
    have_lat = False

    pos = []
    spec = []

    # Here we extract all the possible additional info
    # These are marked by their type
    add_info = {
        'SPIN': float,
        'MAGMOM': float,
        'LABEL': str,
    }
    add_info_arrays = dict((k, []) for k in add_info)

    # Array for custom species (a CASTEP special thing)
    # Usually left unused
    custom_species = None
    # Spacegroup, only if SYMMETRY_OPS is found
    atoms_spg = None

    # A convenient function that extracts this info from a line fragment
    def get_add_info(ai_arrays, line=''):
        re_keys = '({0})'.format('|'.join(add_info.keys()))
        ai_dict = {}
        sline = re.split(re_keys, line, flags=re.IGNORECASE)
        for t_i, tok in enumerate(sline):
            if tok in add_info:
                try:
                    ai_dict[tok] = re.split('[:=]',
                                            sline[t_i + 1],
                                            maxsplit=1)[1].strip()
                except IndexError:
                    ai_dict[tok] = None
        # Then turn these into values into the arrays
        for k in ai_arrays:
            if k not in ai_dict or ai_dict[k] is None:
                ai_arrays[k].append({str: 'NULL',
                                     float: 0.0,
                                     }[add_info[k]])
            else:
                ai_arrays[k].append(add_info[k](ai_dict[k]))

    constraints = []
    raw_constraints = {}
    have_pos = False
    pos_frac = False

    l = 0
    while l < len(lines):
        tokens, l = get_tokens(lines, l)
        if not tokens:
            continue
        elif tokens[0].upper() == '%BLOCK':

            block_name = tokens[1].upper()

            if block_name == 'LATTICE_CART' and not have_lat:
                tokens, l = get_tokens(lines, l)
                if len(tokens) == 1:
                    print('read_cell: Warning - ignoring unit specifier in')
                    print('%BLOCK LATTICE_CART (assuming Angstrom instead)')
                    tokens, l = get_tokens(lines, l)
                for _ in range(3):
                    lat_vec = [float(a) for a in tokens[0:3]]
                    lat.append(lat_vec)
                    tokens, l = get_tokens(lines, l)
                if tokens[0].upper() != '%ENDBLOCK':
                    print('read_cell: Warning - ignoring more than three')
                    print('lattice vectors in invalid %BLOCK LATTICE_CART')
                    print('%s ...' % tokens[0].upper())
                have_lat = True

            elif block_name == 'LATTICE_ABC' and not have_lat:
                tokens, l = get_tokens(lines, l)
                if len(tokens) == 1:
                    print('read_cell: Warning - ignoring unit specifier in')
                    print('%BLOCK LATTICE_ABC (assuming Angstrom instead)')
                    tokens, l = get_tokens(lines, l)
                a, b, c = map(float, tokens[0:3])
                tokens, l = get_tokens(lines, l)
                alpha, beta, gamma = [np.radians(float(phi))
                                      for phi in tokens[0:3]]
                tokens, l = get_tokens(lines, l)
                if tokens[0].upper() != '%ENDBLOCK':
                    print('read_cell: Warning - ignoring additional lines in')
                    print('invalid %BLOCK LATTICE_ABC')
                lat_a = [a, 0, 0]
                lat_b = [b * np.cos(gamma), b * np.sin(gamma), 0]
                lat_c1 = c * np.cos(beta)
                lat_c2 = c * ((np.cos(alpha) - np.cos(beta) * np.cos(gamma)) /
                              np.sin(gamma))
                lat_c3 = np.sqrt(c * c - lat_c1 * lat_c1 - lat_c2 * lat_c2)
                lat_c = [lat_c1, lat_c2, lat_c3]
                lat = [lat_a, lat_b, lat_c]
                have_lat = True

            elif block_name in ('POSITIONS_ABS',
                                'POSITIONS_FRAC') and not have_pos:
                pos_frac = (block_name == 'POSITIONS_FRAC')
                if not pos_frac:
                    # Check for units
                    l_start = l
                    tokens, l = get_tokens(lines, l)
                    if len(tokens) == 1:
                        print('read_cell: Warning - ignoring unit specifier in')
                        print('%BLOCK POSITIONS_ABS(assuming Angstrom instead)')
                    else:
                        l = l_start
                # fix to be able to read initial spin assigned on the atoms
                tokens, l = get_tokens(lines, l, maxsplit=4, has_species=True)
                while len(tokens) >= 4:
                    # Now, process the whole 'species' thing
                    spec_custom = tokens[0].split(':', 1)
                    elem = spec_custom[0]
                    if len(spec_custom) > 1 and custom_species is None:
                        # Add it to the custom info!
                        custom_species = list(spec)
                    spec.append(elem)
                    if custom_species is not None:
                        custom_species.append(tokens[0])
                    pos.append([float(p) for p in tokens[1:4]])
                    if len(tokens) > 4:
                        get_add_info(add_info_arrays, tokens[4])
                    else:
                        get_add_info(add_info_arrays)
                    tokens, l = get_tokens(lines, l, maxsplit=4,
                                           has_species=True)
                if tokens[0].upper() != '%ENDBLOCK':
                    print('read_cell: Warning - ignoring invalid lines in')
                    print('%%BLOCK %s:\n\t %s' % (block_name, tokens))
                have_pos = True

            elif block_name == 'SPECIES_POT':
                if not _fallback:
                    tokens, l = get_tokens(lines, l, has_species=True)
                    while tokens and not tokens[0].upper() == '%ENDBLOCK':
                        if len(tokens) == 2:
                            calc.cell.species_pot = tuple(tokens)
                        tokens, l = get_tokens(lines, l, has_species=True)
            elif block_name == 'IONIC_CONSTRAINTS':

                while True:
                    if tokens and tokens[0].upper() == '%ENDBLOCK':
                        break
                    tokens, l = get_tokens(lines, l)
                    if not len(tokens) == 6:
                        continue
                    _, species, nic, x, y, z = tokens
                    # convert xyz to floats
                    x = float(x)
                    y = float(y)
                    z = float(z)

                    nic = int(nic)
                    if (species, nic) not in raw_constraints:
                        raw_constraints[(species, nic)] = []
                    raw_constraints[(species, nic)].append(np.array(
                                                           [x, y, z]))
            elif block_name == 'SYMMETRY_OPS':
                # Parse the symmetry operations, create a spacegroup
                rotations = []
                translations = []
                while tokens[0].upper() != '%ENDBLOCK':                    
                    # Read in blocks of four
                    for i in range(4):
                        tokens, l = get_tokens(lines, l)
                        if tokens[0].upper() == '%ENDBLOCK':
                            break
                        if i == 0:
                            rotations.append([])
                        if i < 3:
                            rotations[-1].append([float(x)
                                                  for x in tokens[:3]])
                        else:
                            translations.append([float(x)
                                                 for x in tokens[:3]])

                rotations = np.sort(rotations, axis=0)
                translations = np.sort(translations, axis=0)
                if rotations.shape[1:] != (3,3) or \
                   translations.shape[1:] != (3,):
                    print ('Warning: could not parse SYMMETRY_OPS'
                           ' block properly, skipping')
                    continue

                # Now on to find the actual symmetry!
                for spg_n in range(1, 231):
                    test_spg = Spacegroup(spg_n)
                    test_symops = test_spg.get_op()
                    test_symops[0].sort(axis=0)
                    test_symops[1].sort(axis=0)
                    # And test!
                    try:
                        found = np.allclose(test_symops[0], rotations) and \
                                np.allclose(test_symops[1], translations)
                    except ValueError:
                        found = False
                    if found:
                        # We got it!
                        atoms_spg = test_spg
                if atoms_spg is None:
                    # All failed...
                    print('Could not identify Spacegroup from SYMMETRY_OPS,'
                          ' skipping')
                else:
                    calc.__setattr__(block_name, (rotations, translations))

            else:
                print('Warning: the keyword %s is not' % block_name)
                print('         interpreted in cell files')
                # Just collect all lines
                block_lines = []
                while l < len(lines):
                    tokens, l = get_tokens(lines, l)
                    if tokens[0].upper() == '%ENDBLOCK':
                        break
                    else:
                        block_lines.append(lines[l-1].strip())
                calc.__setattr__(block_name, block_lines)
                # raise UserWarning
        else:
            key = tokens[0]
            value = ' '.join(tokens[1:])
            if not _fallback:
                try:
                    calc.__setattr__(key, value)
                except:
                    print('Problem setting calc.cell.%s = %s' % (key, value))
                    raise

    # Get the relevant additional info
    magmom = np.array(add_info_arrays['SPIN'])
    # SPIN or MAGMOM are alternative keywords
    magmom = np.where(magmom != 0, magmom, add_info_arrays['MAGMOM'])
    labels = np.array(add_info_arrays['LABEL'])

    if pos_frac:
        atoms = ase.Atoms(
            calculator=calc,
            cell=lat,
            pbc=True,
            scaled_positions=pos,
            symbols=spec,
            magmoms=magmom)
    else:
        atoms = ase.Atoms(
            calculator=calc,
            cell=lat,
            pbc=True,
            positions=pos,
            symbols=spec,
            magmoms=magmom)

    # Spacegroup...
    if atoms_spg is not None:
        atoms.info['spacegroup'] = atoms_spg

    atoms.new_array('castep_labels', labels)
    if custom_species is not None:
        atoms.new_array('castep_custom_species', np.array(custom_species))

    fixed_atoms = []
    for (species, nic), value in raw_constraints.items():
        absolute_nr = atoms.calc._get_absolute_number(species, nic)
        if len(value) == 3:
            fixed_atoms.append(absolute_nr)
        elif len(value) == 2:
            constraint = ase.constraints.FixedLine(
                a=absolute_nr,
                direction=np.cross(value[0], value[1]))
            constraints.append(constraint)
        elif len(value) == 1:
            # catch cases in which constraints are given in a single line in
            # the cell file
            # if np.count_nonzero(value[0]) == 3:
            #     fixed_atoms.append(absolute_nr)
            # elif np.count_nonzero(value[0]) == 2:
            #     # in this case we need a FixedLine instance
            #     # it is initialized with the atom's index
            #     constraint = ase.constraints.FixedLine(a=absolute_nr,
            #         direction=[not v for v in value[0]])
            #     constraints.append(constraint)
            # else:

            # I do not think you can have a fixed position of a fixed
            # line with only one constraint -- JML
            constraint = ase.constraints.FixedPlane(
                a=absolute_nr,
                direction=np.array(value[0], dtype=np.float32))
            constraints.append(constraint)
        else:
            print('Error: Found %s statements attached to atoms %s'
                  % (len(value), absolute_nr))
    # we need to sort the fixed atoms list in order not to raise an assertion
    # error in FixAtoms
    if fixed_atoms:
        constraints.append(
            ase.constraints.FixAtoms(indices=sorted(fixed_atoms)))
    if constraints:
        atoms.set_constraint(constraints)

    if not _fallback:
        # needs to go here again to have the constraints in
        # atoms.calc.atoms.constraints as well
        atoms.calc.atoms = atoms
        atoms.calc.push_oldstate()
    return atoms


# this actually does not belong here
# think how one could join this with
# the ase.calculators.castep.Castep.read()
# in the future!
# --> has been done (see read_castep_new())
# but not failsave yet!

def read_castep(filename, index=None):
    """
    Wrapper function for the more generic read() functionality.

    Note that this is function is intended to maintain backwards-compatibility
    only.
    """
    from ase.io import read
    return read(filename, index=index, format='castep-castep')


def read_castep_castep(fd, index=None):
    """Reads a .castep file and returns an atoms  object.
    The calculator information will be stored in the calc attribute.
    If more than one SCF step is found, a list of all steps
    will be stored in the traj attribute.

    Note that the index argument has no effect as of now.

    Please note that this routine will return an atom ordering as found
    within the castep file. This means that the species will be ordered by
    ascending atomic numbers. The atoms witin a species are ordered as given
    in the original cell file.
    """
    from ase.calculators.singlepoint import SinglePointCalculator

    lines = fd.readlines()

    traj = []
    energy_total = None
    energy_0K = None
    for i, line in enumerate(lines):
        if 'NB est. 0K energy' in line:
            energy_0K = float(line.split()[6])
        # support also for dispersion correction
        elif 'NB dispersion corrected est. 0K energy*' in line:
            energy_0K = float(line.split()[-2])
        elif 'Final energy, E' in line:
            energy_total = float(line.split()[4])
        elif 'Dispersion corrected final energy' in line:
            pass
            # dispcorr_energy_total = float(line.split()[-2])
            # sedc_apply = True
        elif 'Dispersion corrected final free energy' in line:
            pass  # dispcorr_energy_free = float(line.split()[-2])
        elif 'dispersion corrected est. 0K energy' in line:
            pass  # dispcorr_energy_0K = float(line.split()[-2])
        elif 'Unit Cell' in line:
            cell = [x.split()[0:3] for x in lines[i + 3:i + 6]]
            cell = np.array([[float(col) for col in row] for row in cell])
        elif 'Cell Contents' in line:
            geom_starts = i
            start_found = False
            for j, jline in enumerate(lines[geom_starts:]):
                if jline.find('xxxxx') > 0 and start_found:
                    geom_stop = j + geom_starts
                    break
                if jline.find('xxxx') > 0 and not start_found:
                    geom_start = j + geom_starts + 4
                    start_found = True
            species = [line.split()[1] for line in lines[geom_start:geom_stop]]
            geom = np.dot(np.array([[float(col) for col in line.split()[3:6]]
                                    for line in lines[geom_start:geom_stop]]),
                          cell)
        elif 'Writing model to' in line:
            atoms = ase.Atoms(
                cell=cell,
                pbc=True,
                positions=geom,
                symbols=''.join(species))
            # take 0K energy where available, else total energy
            if energy_0K:
                energy = energy_0K
            else:
                energy = energy_total
            # generate a minimal single-point calculator
            sp_calc = SinglePointCalculator(atoms=atoms,
                                            energy=energy,
                                            forces=None,
                                            magmoms=None,
                                            stress=None)
            atoms.set_calculator(sp_calc)
            traj.append(atoms)
    if index is None:
        return traj
    else:
        return traj[index]


def read_geom(filename, index=':', units=units_CODATA2002):
    """
    Wrapper function for the more generic read() functionality.

    Note that this is function is intended to maintain backwards-compatibility
    only. Keyword arguments will be passed to read_castep_geom().
    """
    from ase.io import read
    return read(filename, index=index, format='castep-geom', units=units)


def read_castep_geom(fd, index=None, units=units_CODATA2002):
    """Reads a .geom file produced by the CASTEP GeometryOptimization task and
    returns an atoms  object.
    The information about total free energy and forces of each atom for every
    relaxation step will be stored for further analysis especially in a
    single-point calculator.
    Note that everything in the .geom file is in atomic units, which has
    been conversed to commonly used unit angstrom(length) and eV (energy).

    Note that the index argument has no effect as of now.

    Contribution by Wei-Bing Zhang. Thanks!

    Routine now accepts a filedescriptor in order to out-source the *.gz and
    *.bz2 handling to formats.py. Note that there is a fallback routine
    read_geom() that behaves like previous versions did.
    """
    from ase.calculators.singlepoint import SinglePointCalculator

    # fd is closed by embracing read() routine
    txt = fd.readlines()

    traj = []

    Hartree = units['Eh']
    Bohr = units['a0']

    # Yeah, we know that...
    # print('N.B.: Energy in .geom file is not 0K extrapolated.')
    for i, line in enumerate(txt):
        if line.find('<-- E') > 0:
            start_found = True
            energy = float(line.split()[0]) * Hartree
            cell = [x.split()[0:3] for x in txt[i + 1:i + 4]]
            cell = np.array([[float(col) * Bohr for col in row] for row in
                             cell])
        if line.find('<-- R') > 0 and start_found:
            start_found = False
            geom_start = i
            for i, line in enumerate(txt[geom_start:]):
                if line.find('<-- F') > 0:
                    geom_stop = i + geom_start
                    break
            species = [line.split()[0] for line in
                       txt[geom_start:geom_stop]]
            geom = np.array([[float(col) * Bohr for col in
                              line.split()[2:5]] for line in
                             txt[geom_start:geom_stop]])
            forces = np.array([[float(col) * Hartree / Bohr for col in
                                line.split()[2:5]] for line in
                               txt[geom_stop:geom_stop +
                                   (geom_stop - geom_start)]])
            image = ase.Atoms(species, geom, cell=cell, pbc=True)
            image.set_calculator(
                SinglePointCalculator(atoms=image, energy=energy,
                                      forces=forces))
            traj.append(image)

    if index is None:
        return traj
    else:
        return traj[index]


def read_phonon(filename, index=None, read_vib_data=False,
                gamma_only=True, frequency_factor=None,
                units=units_CODATA2002):
    """
    Wrapper function for the more generic read() functionality.

    Note that this is function is intended to maintain backwards-compatibility
    only. For documentation see read_castep_phonon().
    """
    from ase.io import read

    if read_vib_data:
        full_output = True
    else:
        full_output = False

    return read(filename, index=index, format='castep-phonon',
                full_output=full_output, read_vib_data=read_vib_data,
                gamma_only=gamma_only, frequency_factor=frequency_factor,
                units=units)


def read_castep_phonon(fd, index=None, read_vib_data=False,
                       gamma_only=True, frequency_factor=None,
                       units=units_CODATA2002):
    """
    Reads a .phonon file written by a CASTEP Phonon task and returns an atoms
    object, as well as the calculated vibrational data if requested.

    Note that the index argument has no effect as of now.
    """

    # fd is closed by embracing read() routine
    lines = fd.readlines()

    atoms = None
    cell = []
    N = Nb = Nq = 0
    scaled_positions = []
    symbols = []
    masses = []

    # header
    l = 0
    while l < len(lines):

        line = lines[l]

        if 'Number of ions' in line:
            N = int(line.split()[3])
        elif 'Number of branches' in line:
            Nb = int(line.split()[3])
        elif 'Number of wavevectors'in line:
            Nq = int(line.split()[3])
        elif 'Unit cell vectors (A)' in line:
            for ll in range(3):
                l += 1
                fields = lines[l].split()
                cell.append([float(x) for x in fields[0:3]])
        elif 'Fractional Co-ordinates' in line:
            for ll in range(N):
                l += 1
                fields = lines[l].split()
                scaled_positions.append([float(x) for x in fields[1:4]])
                symbols.append(fields[4])
                masses.append(float(fields[5]))
        elif 'END header' in line:
            l += 1
            atoms = ase.Atoms(symbols=symbols,
                              scaled_positions=scaled_positions,
                              cell=cell)
            break

        l += 1

    # Eigenmodes and -vectors
    if frequency_factor is None:
        Kayser_to_eV = 1E2 * 2 * np.pi * units['hbar'] * units['c']
    # N.B. "fixed default" unit for frequencies in .phonon files is "cm-1"
    # (i.e. the latter is unaffected by the internal unit conversion system of
    # CASTEP!) set conversion factor to convert therefrom to eV by default for
    # now
    frequency_factor = Kayser_to_eV
    qpoints = []
    weights = []
    frequencies = []
    displacements = []
    for nq in range(Nq):
        fields = lines[l].split()
        qpoints.append([float(x) for x in fields[2:5]])
        weights.append(float(fields[5]))
    freqs = []
    for ll in range(Nb):
        l += 1
        fields = lines[l].split()
        freqs.append(frequency_factor * float(fields[1]))
    frequencies.append(np.array(freqs))

    # skip the two Phonon Eigenvectors header lines
    l += 2

    # generate a list of displacements with a structure that is identical to
    # what is stored internally in the Vibrations class (see in
    # ase.vibrations.Vibrations.modes):
    #      np.array(displacements).shape == (Nb,3*N)

    disps = []
    for ll in range(Nb):
        disp_coords = []
        for lll in range(N):
            l += 1
            fields = lines[l].split()
            disp_x = float(fields[2]) + float(fields[3]) * 1.0j
            disp_y = float(fields[4]) + float(fields[5]) * 1.0j
            disp_z = float(fields[6]) + float(fields[7]) * 1.0j
            disp_coords.extend([disp_x, disp_y, disp_z])
        disps.append(np.array(disp_coords))
    displacements.append(np.array(disps))

    if read_vib_data:
        if gamma_only:
            vibdata = [frequencies[0], displacements[0]]
        else:
            vibdata = [qpoints, weights, frequencies, displacements]
        return vibdata, atoms
    else:
        return atoms


def read_md(filename, index=None, return_scalars=False,
            units=units_CODATA2002):
    """Wrapper function for the more generic read() functionality.

    Note that this function is intended to maintain backwards-compatibility
    only. For documentation see read_castep_md()
    """
    if return_scalars:
        full_output = True
    else:
        full_output = False

    from ase.io import read
    return read(filename, index=index, format='castep-md',
                full_output=full_output, return_scalars=return_scalars,
                units=units)


def read_castep_md(fd, index=None, return_scalars=False,
                   units=units_CODATA2002):
    """Reads a .md file written by a CASTEP MolecularDynamics task
    and returns the trajectory stored therein as a list of atoms object.

    Note that the index argument has no effect as of now."""

    from ase.calculators.singlepoint import SinglePointCalculator

    factors = {
        't': units['t0'] * 1E15,     # fs
        'E': units['Eh'],            # eV
        'T': units['Eh'] / units['kB'],
        'P': units['Eh'] / units['a0']**3 * units['Pascal'],
        'h': units['a0'],
        'hv': units['a0'] / units['t0'],
        'S': units['Eh'] / units['a0']**3,
        'R': units['a0'],
        'V': np.sqrt(units['Eh'] / units['me']),
        'F': units['Eh'] / units['a0']}

    # fd is closed by embracing read() routine
    lines = fd.readlines()

    l = 0
    while 'END header' not in lines[l]:
        l += 1
    l_end_header = l
    lines = lines[l_end_header + 1:]
    times = []
    energies = []
    temperatures = []
    pressures = []
    traj = []

    # Initialization
    time = None
    Epot = None
    Ekin = None
    EH = None
    temperature = None
    pressure = None
    symbols = None
    positions = None
    cell = None
    velocities = None
    symbols = []
    positions = []
    velocities = []
    forces = []
    cell = np.eye(3)
    cell_velocities = []
    stress = []

    for (l, line) in enumerate(lines):
        fields = line.split()
        if len(fields) == 0:
            if l != 0:
                times.append(time)
                energies.append([Epot, EH, Ekin])
                temperatures.append(temperature)
                pressures.append(pressure)
                atoms = ase.Atoms(symbols=symbols,
                                  positions=positions,
                                  cell=cell)
                atoms.set_velocities(velocities)
                if len(stress) == 0:
                    atoms.set_calculator(
                        SinglePointCalculator(atoms=atoms, energy=Epot,
                                              forces=forces))
                else:
                    atoms.set_calculator(
                        SinglePointCalculator(atoms=atoms, energy=Epot,
                                              forces=forces, stress=stress))
                traj.append(atoms)
            symbols = []
            positions = []
            velocities = []
            forces = []
            cell = []
            cell_velocities = []
            stress = []
            continue
        if len(fields) == 1:
            time = factors['t'] * float(fields[0])
            continue

        if fields[-1] == 'E':
            E = [float(x) for x in fields[0:3]]
            Epot, EH, Ekin = [factors['E'] * Ei for Ei in E]
            continue

        if fields[-1] == 'T':
            temperature = factors['T'] * float(fields[0])
            continue

        # only printed in case of variable cell calculation or calculate_stress
        # explicitly requested
        if fields[-1] == 'P':
            pressure = factors['P'] * float(fields[0])
            continue
        if fields[-1] == 'h':
            h = [float(x) for x in fields[0:3]]
            cell.append([factors['h'] * hi for hi in h])
            continue

        # only printed in case of variable cell calculation
        if fields[-1] == 'hv':
            hv = [float(x) for x in fields[0:3]]
            cell_velocities.append([factors['hv'] * hvi for hvi in hv])
            continue

        # only printed in case of variable cell calculation
        if fields[-1] == 'S':
            S = [float(x) for x in fields[0:3]]
            stress.append([factors['S'] * Si for Si in S])
            continue
        if fields[-1] == 'R':
            symbols.append(fields[0])
            R = [float(x) for x in fields[2:5]]
            positions.append([factors['R'] * Ri for Ri in R])
            continue
        if fields[-1] == 'V':
            V = [float(x) for x in fields[2:5]]
            velocities.append([factors['V'] * Vi for Vi in V])
            continue
        if fields[-1] == 'F':
            F = [float(x) for x in fields[2:5]]
            forces.append([factors['F'] * Fi for Fi in F])
            continue

    if index is None:
        pass
    else:
        traj = traj[index]

    if return_scalars:
        data = [times, energies, temperatures, pressures]
        return data, traj
    else:
        return traj


# not yet failsafe new read_castep routine

def read_castep_new(filename, index=None):
    """
    This routine is supposed to replace the former read_castep() routine at
    some point. Basically it does the same job, but it uses the read()
    functionality from the Castep calculator class. This allows a much more
    complete parsing and we do not have to take care of syncing the respective
    routine with each other.

    Note: This routine returns a single atoms_object only, whereas the former
    routine, in principle, returned a list of atoms objects. Yet, if you want
    to parse an MD run, use the novel function `read_md()`

    There is no use of the "index" argument as of now, it is just inserted for
    convenience to comply with the generic "read()" in ase.io

    Please note that this routine will return an atom ordering as found
    within the castep file. This means that the species will be ordered by
    ascending atomic numbers. The atoms witin a species are ordered as given
    in the original cell file.
    """
    from ase.calculators.castep import Castep

    calc = Castep()
    calc.read(castep_file=filename)

    # now we trick the calculator instance such that we can savely extract
    # energies and forces from this atom. Basically what we do is to trick the
    # internal routine calculation_required() to always return False such that
    # we do not need to re-run a CASTEP calculation.
    #
    # Probably we can solve this with a flag to the read() routine at some
    # point, but for the moment I do not want to change too much in there.
    calc._old_atoms = calc.atoms
    calc._old_param = calc.param
    calc._old_cell = calc.cell

    return calc.atoms


# Routines that only the calculator requires

def read_param(filename, calc=None):
    """Reads a param file. If an Castep object is passed as the
    second argument, the parameter setings are merged into
    the existing object and returned. Otherwise a new Castep()
    calculator instance gets created and returned.

    Parameters:
        filename: the .param file. Only opens reading
        calc: [Optional] calculator object to hang parameters onto
    """
    if calc is None:
        from ase.calculators.castep import Castep
        calc = Castep(check_castep_version=False)
    calc.merge_param(filename)
    return calc


def write_param(filename, param, check_checkfile=False,
                force_write=False,
                interface_options=None):
    """Writes a CastepParam object to a CASTEP .param file

    Parameters:
        filename: the location of the file to write to. If it
        exists it will be overwritten without warning. If it
        doesn't it will be created.
        param: a CastepParam instance
        check_checkfile : if set to True, write_param will
        only write continuation or reuse statement
        if a restart file exists in the same directory
    """
    if os.path.isfile(filename) and not force_write:
        print('ase.io.castep.write_param: Set optional argument')
        print('force_write=True to overwrite %s.' % filename)
        return False

    out = paropen(filename, 'w')
    out.write('#######################################################\n')
    out.write('#CASTEP param file: %s\n' % filename)
    out.write('#Created using the Atomic Simulation Environment (ASE)#\n')
    if interface_options is not None:
        out.write('# Internal settings of the calculator\n')
        out.write('# This can be switched off by settings\n')
        out.write('# calc._export_settings = False\n')
        out.write('# If stated, this will be automatically processed\n')
        out.write('# by ase.io.castep.read_seed()\n')
        for option, value in sorted(interface_options.items()):
            out.write('# ASE_INTERFACE %s : %s\n' % (option, value))
    out.write('#######################################################\n\n')
    for keyword, opt in sorted(param._options.items()):
        if opt.type == 'Defined':
            if opt.value is not None:
                out.write('%s\n' % (opt))
        elif opt.value is not None:
            if keyword in ['continuation', 'reuse'] and check_checkfile:
                if opt.value == 'default':
                    if not os.path.exists('%s.%s' %
                                          (os.path.splitext(filename)[0],
                                           'check')):
                        continue
                elif not (os.path.exists(opt.value) or
                          # CASTEP also understands relative path names, hence
                          # also check relative to the param file directory
                          os.path.exists(
                              os.path.join(os.path.dirname(filename),
                                           opt.value))):
                    continue
            if opt.type == 'Block':
                out.write('%%BLOCK %s\n' % keyword.upper())
                out.write(opt.value)
                out.write('\n%%ENDBLOCK %s\n' % keyword.upper())
            else:
                out.write('%s : %s\n' % (keyword, opt.value))
    out.close()


def read_seed(seed, new_seed=None, ignore_internal_keys=False):
    """A wrapper around the CASTEP Calculator in conjunction with
    read_cell and read_param. Basically this can be used to reuse
    a previous calculation which results in a triple of
    cell/param/castep file. The label of the calculation if pre-
    fixed with `copy_of_` and everything else will be recycled as
    much as possible from the addressed calculation.

    Please note that this routine will return an atoms ordering as specified
    in the cell file! It will thus undo the potential reordering internally
    done by castep.
    """

    directory = os.path.abspath(os.path.dirname(seed))
    seed = os.path.basename(seed)

    paramfile = os.path.join(directory, '%s.param' % seed)
    cellfile = os.path.join(directory, '%s.cell' % seed)
    castepfile = os.path.join(directory, '%s.castep' % seed)
    checkfile = os.path.join(directory, '%s.check' % seed)

    atoms = read_cell(cellfile)
    atoms.calc._directory = directory
    atoms.calc._rename_existing_dir = False
    atoms.calc._castep_pp_path = directory
    atoms.calc.merge_param(paramfile,
                           ignore_internal_keys=ignore_internal_keys)
    if new_seed is None:
        atoms.calc._label = 'copy_of_%s' % seed
    else:
        atoms.calc._label = str(new_seed)
    if os.path.isfile(castepfile):
        # _set_atoms needs to be True here
        # but we set it right back to False
        # atoms.calc._set_atoms = False
        # BUGFIX: I do not see a reason to do that!
        atoms.calc.read(castepfile)
        # atoms.calc._set_atoms = False

        # if here is a check file, we also want to re-use this information
        if os.path.isfile(checkfile):
            atoms.calc._check_file = os.path.basename(checkfile)

        # sync the top-level object with the
        # one attached to the calculator
        atoms = atoms.calc.atoms
    else:
        # There are cases where we only want to restore a calculator/atoms
        # setting without a castep file...
        pass
        # No print statement required in these cases
        print('Corresponding *.castep file not found.')
        print('Atoms object will be restored from *.cell and *.param only.')
    atoms.calc.push_oldstate()

    return atoms