1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
"""Reads quantum espresso files. Tested for output on PWSCF v.5.0.2, only
for typical output of input files made with ASE -- that is, ibrav=0."""
import numpy as np
from ase.atoms import Atoms, Atom
from ase import units
from ase.calculators.singlepoint import SinglePointCalculator
def read_espresso_out(fileobj, index):
"""Reads quantum espresso output text files."""
if isinstance(fileobj, str):
fileobj = open(fileobj, 'rU')
lines = fileobj.readlines()
images = []
# Get unit cell info.
bl_line = [line for line in lines if 'bravais-lattice index' in line]
if len(bl_line) != 1:
raise NotImplementedError('Unsupported: unit cell changing.')
bl_line = bl_line[0].strip()
brav_latt_index = bl_line.split('=')[1].strip()
if brav_latt_index != '0':
raise NotImplementedError('Supported only for Bravais-lattice '
'index of 0 (free).')
lp_line = [line for line in lines if 'lattice parameter (alat)' in
line]
if len(lp_line) != 1:
raise NotImplementedError('Unsupported: unit cell changing.')
lp_line = lp_line[0].strip().split('=')[1].strip().split()[0]
lattice_parameter = float(lp_line) * units.Bohr
ca_line_no = [number for (number, line) in enumerate(lines) if
'crystal axes: (cart. coord. in units of alat)' in line]
if len(ca_line_no) != 1:
raise NotImplementedError('Unsupported: unit cell changing.')
ca_line_no = int(ca_line_no[0])
cell = np.zeros((3, 3))
for number, line in enumerate(lines[ca_line_no + 1: ca_line_no + 4]):
line = line.split('=')[1].strip()[1:-1]
values = [float(value) for value in line.split()]
cell[number, 0] = values[0]
cell[number, 1] = values[1]
cell[number, 2] = values[2]
cell *= lattice_parameter
# Find atomic positions and add to images.
for number, line in enumerate(lines):
key = 'Begin final coordinates' # these just reprint last posn.
if key in line:
break
key = 'Cartesian axes'
if key in line:
atoms = make_atoms(number, lines, key, cell)
images.append(atoms)
key = 'ATOMIC_POSITIONS (crystal)'
if key in line:
atoms = make_atoms(number, lines, key, cell)
images.append(atoms)
return images[index]
def make_atoms(index, lines, key, cell):
"""Scan through lines to get the atomic positions."""
atoms = Atoms()
if key == 'Cartesian axes':
for line in lines[index + 3:]:
entries = line.split()
if len(entries) == 0:
break
symbol = entries[1][:-1]
x = float(entries[6])
y = float(entries[7])
z = float(entries[8])
atoms.append(Atom(symbol, (x, y, z)))
atoms.set_cell(cell)
elif key == 'ATOMIC_POSITIONS (crystal)':
for line in lines[index + 1:]:
entries = line.split()
if len(entries) == 0 or (entries[0] == 'End'):
break
symbol = entries[0][:-1]
x = float(entries[1])
y = float(entries[2])
z = float(entries[3])
atoms.append(Atom(symbol, (x, y, z)))
atoms.set_cell(cell, scale_atoms=True)
# Energy is located after positions.
energylines = [number for number, line in enumerate(lines) if
('!' in line and 'total energy' in line)]
energyline = min([n for n in energylines if n > index])
energy = float(lines[energyline].split()[-2]) * units.Ry
# Forces are located after positions.
forces = np.zeros((len(atoms), 3))
forcelines = [number for number, line in enumerate(lines) if
'Forces acting on atoms (Ry/au):' in line]
forceline = min([n for n in forcelines if n > index])
for line in lines[forceline + 4:]:
words = line.split()
if len(words) == 0:
break
fx = float(words[-3])
fy = float(words[-2])
fz = float(words[-1])
atom_number = int(words[1]) - 1
forces[atom_number] = (fx, fy, fz)
forces *= units.Ry / units.Bohr
calc = SinglePointCalculator(atoms, energy=energy, forces=forces)
atoms.set_calculator(calc)
return atoms
def read_espresso_in(fileobj):
"""Reads espresso input files."""
if isinstance(fileobj, str):
fileobj = open(fileobj, 'rU')
data, extralines = read_fortran_namelist(fileobj)
positions, method = get_atomic_positions(extralines,
n_atoms=data['system']['nat'])
cell = get_cell_parameters(extralines)
if data['system']['ibrav'] == 0:
atoms = build_atoms(positions, method, cell,
data['system']['celldm(1)'])
else:
raise NotImplementedError('ibrav=%i not implemented.' %
data['system']['ibrav'])
return atoms
def build_atoms(positions, method, cell, alat):
"""Creates the atoms for a quantum espresso in file."""
if method != 'crystal':
raise NotImplementedError('Only supported for crystal method of '
'ATOMIC_POSITIONS, not %s.' % method)
atoms = Atoms()
for el, (x, y, z) in positions:
atoms.append(Atom(el, (x, y, z)))
cell *= alat * units.Bohr
atoms.set_cell(cell, scale_atoms=True)
return atoms
def get_atomic_positions(lines, n_atoms):
"""Returns the atomic positions of the atoms as an (ordered) list from
the lines of text of the espresso input file."""
atomic_positions = []
line = [n for (n, l) in enumerate(lines) if 'ATOMIC_POSITIONS' in l]
if len(line) == 0:
return None
if len(line) > 1:
raise RuntimeError('More than one ATOMIC_POSITIONS section?')
line_no = line[0]
for line in lines[line_no + 1:line_no + n_atoms + 1]:
el, x, y, z = line.split()
atomic_positions.append([el, (f2f(x), f2f(y), f2f(z))])
line = lines[line_no]
if '{' in line:
method = line[line.find('{') + 1:line.find('}')]
elif '(' in line:
method = line[line.find('(') + 1:line.find(')')]
else:
method = None
return atomic_positions, method
def get_cell_parameters(lines):
"""Returns the cell parameters as a matrix."""
cell_parameters = np.zeros((3, 3))
line = [n for (n, l) in enumerate(lines) if 'CELL_PARAMETERS' in l]
if len(line) == 0:
return None
if len(line) > 1:
raise RuntimeError('More than one CELL_PARAMETERS section?')
line_no = line[0]
for vector, line in enumerate(lines[line_no + 1:line_no + 4]):
x, y, z = line.split()
cell_parameters[vector] = (f2f(x), f2f(y), f2f(z))
return cell_parameters
def str2value(string):
"""Convert string into int, float, or bool, if possible, else return it."""
for datatype in [int, float]:
try:
return datatype(string)
except ValueError:
pass
return {'.true.': True, '.false.': False}.get(string, string)
def read_fortran_namelist(fileobj):
"""Takes a fortran-namelist formatted file and returns appropriate
dictionaries, followed by lines of text that do not fit this pattern.
"""
data = {}
extralines = []
indict = False
fileobj.seek(0)
for line in fileobj.readlines():
if indict and line.strip().startswith('/'):
indict = False
elif line.strip().startswith('&'):
indict = True
dictname = line.strip()[1:].lower()
data[dictname] = {}
elif (not indict) and (len(line.strip()) > 0):
extralines.append(line)
elif indict:
key, value = line.strip().split('=')
if value.endswith(','):
value = value[:-1]
value = str2value(value.strip())
data[dictname][key.strip()] = value
return data, extralines
def f2f(value):
"""Converts a fortran-formatted double precision number (e.g., 2.323d2)
to a python float. value should be a string."""
value = value.replace('d', 'e')
value = value.replace('D', 'e')
return float(value)
|