1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
"""
Module for povray file format support.
See http://www.povray.org/ for details on the format.
"""
import os
import numpy as np
from ase.io.eps import EPS
from ase.constraints import FixAtoms
def pa(array):
"""Povray array syntax"""
return '<% 6.2f, % 6.2f, % 6.2f>' % tuple(array)
def pc(array):
"""Povray color syntax"""
if isinstance(array, str):
return 'color ' + array
if isinstance(array, float):
return 'rgb <%.2f>*3' % array
if len(array) == 3:
return 'rgb <%.2f, %.2f, %.2f>' % tuple(array)
if len(array) == 4: # filter
return 'rgbf <%.2f, %.2f, %.2f, %.2f>' % tuple(array)
if len(array) == 5: # filter and transmit
return 'rgbft <%.2f, %.2f, %.2f, %.2f, %.2f>' % tuple(array)
def get_bondpairs(atoms, radius=1.1):
"""Get all pairs of bonding atoms
Return all pairs of atoms which are closer than radius times the
sum of their respective covalent radii. The pairs are returned as
tuples::
(a, b, (i1, i2, i3))
so that atoms a bonds to atom b displaced by the vector::
_ _ _
i c + i c + i c ,
1 1 2 2 3 3
where c1, c2 and c3 are the unit cell vectors and i1, i2, i3 are
integers."""
from ase.data import covalent_radii
from ase.neighborlist import NeighborList
cutoffs = radius * covalent_radii[atoms.numbers]
nl = NeighborList(cutoffs=cutoffs, self_interaction=False)
nl.update(atoms)
bondpairs = []
for a in range(len(atoms)):
indices, offsets = nl.get_neighbors(a)
bondpairs.extend([(a, a2, offset)
for a2, offset in zip(indices, offsets)])
return bondpairs
class POVRAY(EPS):
default_settings = {
# x, y is the image plane, z is *out* of the screen
'display': True, # display while rendering
'pause': True, # pause when done rendering (only if display)
'transparent': True, # transparent background
'canvas_width': None, # width of canvas in pixels
'canvas_height': None, # height of canvas in pixels
'camera_dist': 50., # distance from camera to front atom
'image_plane': None, # distance from front atom to image plane
'camera_type': 'orthographic', # perspective, ultra_wide_angle
'point_lights': [], # [[loc1, color1], [loc2, color2],...]
'area_light': [(2., 3., 40.), # location
'White', # color
.7, .7, 3, 3], # width, height, Nlamps_x, Nlamps_y
'background': 'White', # color
'textures': None, # length of atoms list of texture names
'transmittances': None, # transmittance of the atoms
# use with care - in particular adjust the camera_distance to be closer
'depth_cueing': False, # fog a.k.a. depth cueing
'cue_density': 5e-3, # fog a.k.a. depth cueing
'celllinewidth': 0.05, # radius of the cylinders representing the cell
'bondlinewidth': 0.10, # radius of the cylinders representing bonds
'bondatoms': [], # [[atom1, atom2], ... ] pairs of bonding atoms
'exportconstraints': False} # honour FixAtoms and mark relevant atoms?
def __init__(self, atoms, scale=1.0, **parameters):
for k, v in self.default_settings.items():
setattr(self, k, parameters.pop(k, v))
EPS.__init__(self, atoms, scale=scale, **parameters)
constr = atoms.constraints
self.constrainatoms = []
for c in constr:
if isinstance(c, FixAtoms):
for n, i in enumerate(c.index):
if i:
self.constrainatoms += [n]
def cell_to_lines(self, A):
return np.empty((0, 3)), None, None
def write(self, filename, **settings):
# Determine canvas width and height
ratio = float(self.w) / self.h
if self.canvas_width is None:
if self.canvas_height is None:
self.canvas_width = min(self.w * 15, 640)
else:
self.canvas_width = self.canvas_height * ratio
elif self.canvas_height is not None:
raise RuntimeError("Can't set *both* width and height!")
# Distance to image plane from camera
if self.image_plane is None:
if self.camera_type == 'orthographic':
self.image_plane = 1 - self.camera_dist
else:
self.image_plane = 0
self.image_plane += self.camera_dist
# Produce the .ini file
if filename.endswith('.pov'):
ini = open(filename[:-4] + '.ini', 'w').write
else:
ini = open(filename + '.ini', 'w').write
ini('Input_File_Name=%s\n' % filename)
ini('Output_to_File=True\n')
ini('Output_File_Type=N\n')
ini('Output_Alpha=%s\n' % self.transparent)
ini('; if you adjust Height, and width, you must preserve the ratio\n')
ini('; Width / Height = %s\n' % repr(ratio))
ini('Width=%s\n' % self.canvas_width)
ini('Height=%s\n' % (self.canvas_width / ratio))
ini('Antialias=True\n')
ini('Antialias_Threshold=0.1\n')
ini('Display=%s\n' % self.display)
ini('Pause_When_Done=%s\n' % self.pause)
ini('Verbose=False\n')
del ini
# Produce the .pov file
w = open(filename, 'w').write
w('#include "colors.inc"\n')
w('#include "finish.inc"\n')
w('\n')
w('global_settings {assumed_gamma 1 max_trace_level 6}\n')
w('background {%s}\n' % pc(self.background))
w('camera {%s\n' % self.camera_type)
w(' right -%.2f*x up %.2f*y\n' % (self.w, self.h))
w(' direction %.2f*z\n' % self.image_plane)
w(' location <0,0,%.2f> look_at <0,0,0>}\n' % self.camera_dist)
for loc, rgb in self.point_lights:
w('light_source {%s %s}\n' % (pa(loc), pc(rgb)))
if self.area_light is not None:
loc, color, width, height, nx, ny = self.area_light
w('light_source {%s %s\n' % (pa(loc), pc(color)))
w(' area_light <%.2f, 0, 0>, <0, %.2f, 0>, %i, %i\n' % (
width, height, nx, ny))
w(' adaptive 1 jitter}\n')
# the depth cueing
if self.depth_cueing and (self.cue_density >= 1e-4):
# same way vmd does it
if self.cue_density > 1e4:
# larger does not make any sense
dist = 1e-4
else:
dist = 1. / self.cue_density
w('fog {fog_type 1 distance %.4f color %s}' %
(dist, pc(self.background)))
w('\n')
w('#declare simple = finish {phong 0.7}\n')
w('#declare pale = finish {'
'ambient .5 '
'diffuse .85 '
'roughness .001 '
'specular 0.200 }\n')
w('#declare intermediate = finish {'
'ambient 0.3 '
'diffuse 0.6 '
'specular 0.10 '
'roughness 0.04 }\n')
w('#declare vmd = finish {'
'ambient .0 '
'diffuse .65 '
'phong 0.1 '
'phong_size 40. '
'specular 0.500 }\n')
w('#declare jmol = finish {'
'ambient .2 '
'diffuse .6 '
'specular 1 '
'roughness .001 '
'metallic}\n')
w('#declare ase2 = finish {'
'ambient 0.05 '
'brilliance 3 '
'diffuse 0.6 '
'metallic '
'specular 0.70 '
'roughness 0.04 '
'reflection 0.15}\n')
w('#declare ase3 = finish {'
'ambient .15 '
'brilliance 2 '
'diffuse .6 '
'metallic '
'specular 1. '
'roughness .001 '
'reflection .0}\n')
w('#declare glass = finish {'
'ambient .05 '
'diffuse .3 '
'specular 1. '
'roughness .001}\n')
w('#declare glass2 = finish {'
'ambient .0 '
'diffuse .3 '
'specular 1. '
'reflection .25 '
'roughness .001}\n')
w('#declare Rcell = %.3f;\n' % self.celllinewidth)
w('#declare Rbond = %.3f;\n' % self.bondlinewidth)
w('\n')
w('#macro atom(LOC, R, COL, TRANS, FIN)\n')
w(' sphere{LOC, R texture{pigment{color COL transmit TRANS} '
'finish{FIN}}}\n')
w('#end\n')
w('#macro constrain(LOC, R, COL, TRANS FIN)\n')
w('union{torus{R, Rcell rotate 45*z '
'texture{pigment{color COL transmit TRANS} finish{FIN}}}\n')
w(' torus{R, Rcell rotate -45*z '
'texture{pigment{color COL transmit TRANS} finish{FIN}}}\n')
w(' translate LOC}\n')
w('#end\n')
w('\n')
z0 = self.X[:, 2].max()
self.X -= (self.w / 2, self.h / 2, z0)
# Draw unit cell
if self.C is not None:
self.C -= (self.w / 2, self.h / 2, z0)
self.C.shape = (2, 2, 2, 3)
for c in range(3):
for j in ([0, 0], [1, 0], [1, 1], [0, 1]):
w('cylinder {')
for i in range(2):
j.insert(c, i)
w(pa(self.C[tuple(j)]) + ', ')
del j[c]
w('Rcell pigment {Black}}\n')
# Draw atoms
a = 0
for loc, dia, color in zip(self.X, self.d, self.colors):
tex = 'ase3'
trans = 0.
if self.textures is not None:
tex = self.textures[a]
if self.transmittances is not None:
trans = self.transmittances[a]
w('atom(%s, %.2f, %s, %s, %s) // #%i \n' % (
pa(loc), dia / 2., pc(color), trans, tex, a))
a += 1
# Draw atom bonds
for pair in self.bondatoms:
if len(pair) == 2:
a, b = pair
offset = (0, 0, 0)
else:
a, b, offset = pair
R = np.dot(offset, self.A)
mida = 0.5 * (self.X[a] + self.X[b] + R)
midb = 0.5 * (self.X[a] + self.X[b] - R)
if self.textures is not None:
texa = self.textures[a]
texb = self.textures[b]
else:
texa = texb = 'ase3'
if self.transmittances is not None:
transa = self.transmittances[a]
transb = self.transmittances[b]
else:
transa = transb = 0.
fmt = ('cylinder {%s, %s, Rbond texture{pigment '
'{color %s transmit %s} finish{%s}}}\n')
w(fmt %
(pa(self.X[a]), pa(mida), pc(self.colors[a]), transa, texa))
w(fmt %
(pa(self.X[b]), pa(midb), pc(self.colors[b]), transb, texb))
# Draw constraints if requested
if self.exportconstraints:
for a in self.constrainatoms:
dia = self.d[a]
loc = self.X[a]
trans = 0.0
if self.transmittances is not None:
trans = self.transmittances[a]
w('constrain(%s, %.2f, Black, %s, %s) // #%i \n' % (
pa(loc), dia / 2., tex, a, trans))
def write_pov(filename, atoms, run_povray=False, **parameters):
if isinstance(atoms, list):
assert len(atoms) == 1
atoms = atoms[0]
assert 'scale' not in parameters
POVRAY(atoms, **parameters).write(filename)
if run_povray:
cmd = 'povray %s.ini 2> /dev/null' % filename[:-4]
errcode = os.system(cmd)
if errcode != 0:
raise OSError('Povray command ' + cmd +
' failed with error code %d' % errcode)
|