File: cubic.py

package info (click to toggle)
python-ase 3.12.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,192 kB
  • ctags: 8,112
  • sloc: python: 93,375; sh: 99; makefile: 94
file content (127 lines) | stat: -rw-r--r-- 4,518 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from __future__ import print_function
"""Function-like objects creating cubic lattices (SC, FCC, BCC and Diamond).

The following lattice creators are defined:
    SimpleCubic
    FaceCenteredCubic
    BodyCenteredCubic
    Diamond
"""

from ase.lattice.bravais import Bravais, reduceindex
import numpy as np
from ase.data import reference_states as _refstate


class SimpleCubicFactory(Bravais):
    "A factory for creating simple cubic lattices."

    # The name of the crystal structure in ChemicalElements
    xtal_name = "sc"

    # The natural basis vectors of the crystal structure
    int_basis = np.array([[1, 0, 0],
                          [0, 1, 0],
                          [0, 0, 1]])
    basis_factor = 1.0

    # Converts the natural basis back to the crystallographic basis
    inverse_basis = np.array([[1, 0, 0],
                              [0, 1, 0],
                              [0, 0, 1]])
    inverse_basis_factor = 1.0

    # For checking the basis volume
    atoms_in_unit_cell = 1
    
    def get_lattice_constant(self):
        "Get the lattice constant of an element with cubic crystal structure."
        if _refstate[self.atomicnumber]['symmetry'] != self.xtal_name:
            raise ValueError(("Cannot guess the %s lattice constant of"
                                + " an element with crystal structure %s.")
                               % (self.xtal_name,
                                  _refstate[self.atomicnumber]['symmetry']))
        return _refstate[self.atomicnumber]['a']

    def make_crystal_basis(self):
        "Make the basis matrix for the crystal unit cell and the system unit cell."
        self.crystal_basis = (self.latticeconstant * self.basis_factor
                              * self.int_basis)
        self.miller_basis = self.latticeconstant * np.identity(3)
        self.basis = np.dot(self.directions, self.crystal_basis)
        self.check_basis_volume()

    def check_basis_volume(self):
        "Check the volume of the unit cell."
        vol1 = abs(np.linalg.det(self.basis))
        cellsize = self.atoms_in_unit_cell
        if self.bravais_basis is not None:
            cellsize *= len(self.bravais_basis)
        vol2 = (self.calc_num_atoms() * self.latticeconstant**3 / cellsize)
        assert abs(vol1-vol2) < 1e-5

    def find_directions(self, directions, miller):
        "Find missing directions and miller indices from the specified ones."
        directions = list(directions)
        miller = list(miller)
        # Process keyword "orthogonal"
        self.find_ortho(directions)
        self.find_ortho(miller)
        Bravais.find_directions(self, directions, miller)
        
    def find_ortho(self, idx):
        "Replace keyword 'ortho' or 'orthogonal' with a direction."
        for i in range(3):
            if isinstance(idx[i], str) and (idx[i].lower() == "ortho" or
                                            idx[i].lower() == "orthogonal"):
                if self.debug:
                    print("Calculating orthogonal direction", i)
                    print(idx[i-2], "X", idx[i-1], end=' ')
                idx[i] = reduceindex(np.cross(idx[i-2], idx[i-1]))
                if self.debug:
                    print("=", idx[i])
                

SimpleCubic = SimpleCubicFactory()

class FaceCenteredCubicFactory(SimpleCubicFactory):
    "A factory for creating face-centered cubic lattices."

    xtal_name = "fcc"
    int_basis = np.array([[0, 1, 1],
                          [1, 0, 1],
                          [1, 1, 0]])
    basis_factor = 0.5
    inverse_basis = np.array([[-1, 1, 1],
                              [1, -1, 1],
                              [1, 1, -1]])
    inverse_basis_factor = 1.0

    atoms_in_unit_cell = 4
    
FaceCenteredCubic = FaceCenteredCubicFactory()

class BodyCenteredCubicFactory(SimpleCubicFactory):
    "A factory for creating body-centered cubic lattices."

    xtal_name = "bcc"
    int_basis = np.array([[-1, 1, 1],
                          [1, -1, 1],
                          [1, 1, -1]])
    basis_factor = 0.5
    inverse_basis = np.array([[0, 1, 1],
                              [1, 0, 1],
                              [1, 1, 0]])
    inverse_basis_factor = 1.0

    atoms_in_unit_cell = 2
    
BodyCenteredCubic = BodyCenteredCubicFactory()

class DiamondFactory(FaceCenteredCubicFactory):
    "A factory for creating diamond lattices."
    xtal_name = "diamond"
    bravais_basis = [[0,0,0], [0.25, 0.25, 0.25]]
    
Diamond = DiamondFactory()