1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
from __future__ import print_function
# Copyright (C) 2012, Jesper Friis
# (see accompanying license files for ASE).
"""
Determines space group of an atoms object using the FINDSYM program
from the ISOTROPY (http://stokes.byu.edu/iso/isotropy.html) software
package by H. T. Stokes and D. M. Hatch, Brigham Young University,
USA.
In order to use this module, you have to download the ISOTROPY package
from http://stokes.byu.edu/iso/isotropy.html and set the environment
variable ISODATA to the path of the directory containing findsym
and data_space.txt (NB: the path should end with a slash (/)).
Example
-------
>>> from ase.spacegroup import crystal
>>> from ase.build import cut
# Start with simple fcc Al
>>> al = crystal('Al', [(0,0,0)], spacegroup=225, cellpar=4.05)
>>> d = findsym(al)
>>> d['spacegroup']
225
# No problem with a more complex structure...
>>> skutterudite = crystal(('Co', 'Sb'),
... basis=[(0.25,0.25,0.25), (0.0, 0.335, 0.158)],
... spacegroup=204,
... cellpar=9.04)
>>> d = findsym(skutterudite)
>>> d['spacegroup']
204
# ... or a non-conventional cut
slab = cut(skutterudite, a=(1, 1, 0), b=(0, 2, 0), c=(0, 0, 1))
d = findsym(slab)
>>> d['spacegroup']
204
"""
import os
import subprocess
import numpy as np
import ase
__all__ = ['findsym', 'unique']
def make_input(atoms, tol=1e-3, centering='P', types=None):
"""Returns input to findsym. See findsym() for a description of
the arguments."""
if types is None:
types = atoms.numbers
s = []
s.append(atoms.get_chemical_formula())
s.append('%g tolerance' % tol)
s.append('2 form of lattice parameters: to be entered as lengths '
'and angles')
s.append('%g %g %g %g %g %g a,b,c,alpha,beta,gamma' %
tuple(ase.geometry.cell_to_cellpar(atoms.cell)))
s.append('2 form of vectors defining unit cell') # ??
s.append('%s centering (P=unknown)' % centering)
s.append('%d number of atoms in primitive unit cell' % len(atoms))
s.append(' '.join(str(n) for n in types) + ' type of each atom')
for p in atoms.get_scaled_positions():
s.append('%10.5f %10.5f %10.5f' % tuple(p))
return '\n'.join(s)
def run(atoms, tol=1e-3, centering='P', types=None, isodata_dir=None):
"""Runs FINDSYM and returns its standard output."""
if isodata_dir is None:
isodata_dir = os.getenv('ISODATA')
if isodata_dir is None:
isodata_dir = '.'
isodata_dir = os.path.normpath(isodata_dir)
findsym = os.path.join(isodata_dir, 'findsym')
data_space = os.path.join(isodata_dir, 'data_space.txt')
for path in findsym, data_space:
if not os.path.exists(path):
raise IOError('no such file: %s. Have you set the ISODATA '
'environment variable to the directory containing '
'findsym and data_space.txt?' % path)
env = os.environ.copy()
env['ISODATA'] = isodata_dir + os.sep
p = subprocess.Popen([findsym], stdin=subprocess.PIPE,
stdout=subprocess.PIPE, env=env)
stdout = p.communicate(make_input(atoms, tol, centering, types))[0]
# if os.path.exists('findsym.log'):
# os.remove('findsym.log')
return stdout
def parse(output):
"""Parse output from FINDSYM (Version 3.2.3, August 2007) and
return a dict. See docstring for findsym() for a description of
the tokens."""
d = {}
lines = output.splitlines()
def search_for_line(line_str):
check_line = [i for i, line in enumerate(lines)
if line.startswith(line_str)]
return check_line
i_cellpar = search_for_line('Lattice parameters')[0]
d['cellpar'] = np.array([float(v) for v in
lines[i_cellpar + 1].split()])
i_natoms = search_for_line('Number of atoms in unit cell')[0]
natoms = int(lines[i_natoms + 1].split()[0])
# Determine number of atoms from atom types, since the number of
# atoms is written with only 3 digits, which crashes the parser
# for more than 999 atoms
i_spg = search_for_line('Space Group')[0]
tokens = lines[i_spg].split()
d['spacegroup'] = int(tokens[2])
# d['symbol_nonconventional'] = tokens[3]
d['symbol'] = tokens[4]
i_origin = search_for_line('Origin at')[0]
d['origin'] = np.array([float(v) for v in lines[i_origin].split()[2:]])
i_abc = search_for_line('Vectors a,b,c')[0]
d['abc'] = np.array([[float(v) for v in line.split()]
for line in lines[i_abc + 1:i_abc + 4]]).T
i_wyck_start = search_for_line('Wyckoff position')
d['wyckoff'] = []
d['tags'] = -np.ones(natoms, dtype=int)
i_wyck_stop = i_wyck_start[1:]
i_wyck_stop += [i_wyck_start[0] + natoms + 3]
# sort the tags to the indivual atoms
for tag, (i_start, i_stop) in enumerate(zip(i_wyck_start,
i_wyck_stop)):
tokens = lines[i_start].split()
d['wyckoff'].append(tokens[2].rstrip(','))
i_tag = [int(line.split()[0]) - 1
for line in lines[i_start + 1:i_stop]]
d['tags'][i_tag] = tag
return d
def findsym(atoms, tol=1e-3, centering='P', types=None, isodata_dir=None):
"""Returns a dict describing the symmetry of *atoms*.
Arguments
---------
atoms: Atoms instance
Atoms instance to find space group of.
tol: float
Accuracy to which dimensions of the unit cell and positions of
atoms are known. Units in Angstrom.
centering: 'P' | 'I' | 'F' | 'A' | 'B' | 'C' | 'R'
Known centering: P (no known centering), I (body-centered), F
(face-centered), A,B,C (base centered), R (rhombohedral
centered with coordinates of centered points at (2/3,1/3,1/3)
and (1/3,2/3,2/3)).
types: None | sequence of integers
Sequence of arbitrary positive integers identifying different
atomic sites, so that a symmetry operation that takes one atom
into another with different type would be forbidden.
Returned dict items
-------------------
abc: 3x3 float array
The vectors a, b, c defining the cell in scaled coordinates.
cellpar: 6 floats
Cell parameters a, b, c, alpha, beta, gamma with lengths in
Angstrom and angles in degree.
origin: 3 floats
Origin of the space group with respect to the origin in the
input data. Coordinates are dimensionless, given in terms of
the lattice parameters of the unit cell in the input.
spacegroup: int
Space group number from the International Tables of
Crystallography.
symbol: str
Hermann-Mauguin symbol (no spaces).
tags: int array
Array of site numbers for each atom. Only atoms within the
first conventional unit cell are tagged, the rest have -1 as
tag.
wyckoff: list
List of wyckoff symbols for each site.
"""
output = run(atoms, tol, centering, types, isodata_dir)
d = parse(output)
return d
def unique(atoms, tol=1e-3, centering='P', types=None, isodata_dir=None):
"""Returns an Atoms object containing only one atom from each unique site.
"""
d = findsym(atoms, tol=tol, centering=centering, types=types,
isodata_dir=isodata_dir)
mask = np.concatenate(([True], np.diff(d['tags']) != 0)) * (d['tags'] >= 0)
at = atoms[mask]
a, b, c, alpha, beta, gamma = d['cellpar']
A, B, C = d['abc']
A *= a
B *= b
C *= c
from numpy.linalg import norm
from numpy import cos, pi
assert abs(np.dot(A, B) -
(norm(A) * norm(B) * cos(gamma * pi / 180.))) < 1e-5
assert abs(np.dot(A, C) -
(norm(A) * norm(C) * cos(beta * pi / 180.))) < 1e-5
assert abs(np.dot(B, C) -
(norm(B) * norm(C) * cos(alpha * pi / 180.))) < 1e-5
at.cell = np.array([A, B, C])
for k in 'origin', 'spacegroup', 'wyckoff':
at.info[k] = d[k]
at.info['unit_cell'] = 'unique'
scaled = at.get_scaled_positions()
at.set_scaled_positions(scaled)
return at
|