File: xtal.py

package info (click to toggle)
python-ase 3.12.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,192 kB
  • ctags: 8,112
  • sloc: python: 93,375; sh: 99; makefile: 94
file content (162 lines) | stat: -rw-r--r-- 5,898 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from __future__ import print_function
# Copyright (C) 2010, Jesper Friis
# (see accompanying license files for details).

"""
A module for ASE for simple creation of crystalline structures from
knowledge of the space group.

"""

import numpy as np

import ase
from ase.atoms import string2symbols
from ase.spacegroup import Spacegroup
from ase.geometry import cellpar_to_cell

__all__ = ['crystal']


def crystal(symbols=None, basis=None, spacegroup=1, setting=1,
            cell=None, cellpar=None,
            ab_normal=(0, 0, 1), a_direction=None, size=(1, 1, 1),
            onduplicates='warn', symprec=0.001,
            pbc=True, primitive_cell=False, **kwargs):
    """Create an Atoms instance for a conventional unit cell of a
    space group.

    Parameters:

    symbols : str | sequence of str | sequence of Atom | Atoms
        Element symbols of the unique sites.  Can either be a string
        formula or a sequence of element symbols. E.g. ('Na', 'Cl')
        and 'NaCl' are equivalent.  Can also be given as a sequence of
        Atom objects or an Atoms object.
    basis : list of scaled coordinates
        Positions of the unique sites corresponding to symbols given
        either as scaled positions or through an atoms instance.  Not
        needed if *symbols* is a sequence of Atom objects or an Atoms
        object.
    spacegroup : int | string | Spacegroup instance
        Space group given either as its number in International Tables
        or as its Hermann-Mauguin symbol.
    setting : 1 | 2
        Space group setting.
    cell : 3x3 matrix
        Unit cell vectors.
    cellpar : [a, b, c, alpha, beta, gamma]
        Cell parameters with angles in degree. Is not used when `cell`
        is given.
    ab_normal : vector
        Is used to define the orientation of the unit cell relative
        to the Cartesian system when `cell` is not given. It is the
        normal vector of the plane spanned by a and b.
    a_direction : vector
        Defines the orientation of the unit cell a vector. a will be
        parallel to the projection of `a_direction` onto the a-b plane.
    size : 3 positive integers
        How many times the conventional unit cell should be repeated
        in each direction.
    onduplicates : 'keep' | 'replace' | 'warn' | 'error'
        Action if `basis` contain symmetry-equivalent positions:
            'keep'    - ignore additional symmetry-equivalent positions
            'replace' - replace
            'warn'    - like 'keep', but issue an UserWarning
            'error'   - raises a SpacegroupValueError
    symprec : float
        Minimum "distance" betweed two sites in scaled coordinates
        before they are counted as the same site.
    pbc : one or three bools
        Periodic boundary conditions flags.  Examples: True,
        False, 0, 1, (1, 1, 0), (True, False, False).  Default
        is True.
    primitive_cell : bool
        Wheter to return the primitive instead of the conventional
        unit cell.

    Keyword arguments:

    All additional keyword arguments are passed on to the Atoms
    constructor.  Currently, probably the most useful additional
    keyword arguments are `info`, `constraint` and `calculator`.

    Examples:

    Two diamond unit cells (space group number 227)

    >>> diamond = crystal('C', [(0,0,0)], spacegroup=227,
    ...     cellpar=[3.57, 3.57, 3.57, 90, 90, 90], size=(2,1,1))
    >>> ase.view(diamond)  # doctest: +SKIP

    A CoSb3 skutterudite unit cell containing 32 atoms

    >>> skutterudite = crystal(('Co', 'Sb'),
    ...     basis=[(0.25,0.25,0.25), (0.0, 0.335, 0.158)],
    ...     spacegroup=204, cellpar=[9.04, 9.04, 9.04, 90, 90, 90])
    >>> len(skutterudite)
    32
    """
    sg = Spacegroup(spacegroup, setting)
    if (not isinstance(symbols, str) and
        hasattr(symbols, '__getitem__') and
        len(symbols) > 0 and
        isinstance(symbols[0], ase.Atom)):
        symbols = ase.Atoms(symbols)
    if isinstance(symbols, ase.Atoms):
        basis = symbols
        symbols = basis.get_chemical_symbols()
    if isinstance(basis, ase.Atoms):
        basis_coords = basis.get_scaled_positions()
        if cell is None and cellpar is None:
            cell = basis.cell
        if symbols is None:
            symbols = basis.get_chemical_symbols()
    else:
        basis_coords = np.array(basis, dtype=float, copy=False, ndmin=2)
    sites, kinds = sg.equivalent_sites(basis_coords,
                                       onduplicates=onduplicates,
                                       symprec=symprec)
    symbols = parse_symbols(symbols)
    symbols = [symbols[i] for i in kinds]
    if cell is None:
        cell = cellpar_to_cell(cellpar, ab_normal, a_direction)

    info = dict(spacegroup=sg)
    if primitive_cell:
        info['unit_cell'] = 'primitive'
    else:
        info['unit_cell'] = 'conventional'

    if 'info' in kwargs:
        info.update(kwargs['info'])
    kwargs['info'] = info

    atoms = ase.Atoms(symbols,
                      scaled_positions=sites,
                      cell=cell,
                      pbc=pbc,
                      **kwargs)

    if isinstance(basis, ase.Atoms):
        for name in basis.arrays:
            if not atoms.has(name):
                array = basis.get_array(name)
                atoms.new_array(name, [array[i] for i in kinds],
                                dtype=array.dtype, shape=array.shape[1:])

    if primitive_cell:
        from ase.build import cut
        prim_cell = sg.scaled_primitive_cell
        atoms = cut(atoms, a=prim_cell[0], b=prim_cell[1], c=prim_cell[2])

    if size != (1, 1, 1):
        atoms = atoms.repeat(size)
    return atoms

    
def parse_symbols(symbols):
    """Return `sumbols` as a sequence of element symbols."""
    if isinstance(symbols, str):
        symbols = string2symbols(symbols)
    return symbols