1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
"""Test the ase.geometry module and ase.build.cut() function."""
from __future__ import division
import numpy as np
from ase.build import cut, bulk
from ase.geometry import (get_layers, wrap_positions,
crystal_structure_from_cell)
from ase.spacegroup import crystal
al = crystal('Al', [(0, 0, 0)], spacegroup=225, cellpar=4.05)
# Cut out slab of 5 Al(001) layers
al001 = cut(al, nlayers=5)
correct_pos = np.array([[0., 0., 0.],
[0., 0.5, 0.2],
[0.5, 0., 0.2],
[0.5, 0.5, 0.],
[0., 0., 0.4],
[0., 0.5, 0.6],
[0.5, 0., 0.6],
[0.5, 0.5, 0.4],
[0., 0., 0.8],
[0.5, 0.5, 0.8]])
assert np.allclose(correct_pos, al001.get_scaled_positions())
# Check layers along 001
tags, levels = get_layers(al001, (0, 0, 1))
assert np.allclose(tags, [0, 1, 1, 0, 2, 3, 3, 2, 4, 4])
assert np.allclose(levels, [0., 2.025, 4.05, 6.075, 8.1])
# Check layers along 101
tags, levels = get_layers(al001, (1, 0, 1))
assert np.allclose(tags, [0, 1, 5, 3, 2, 4, 8, 7, 6, 9])
assert np.allclose(levels, [0.000, 0.752, 1.504, 1.880, 2.256, 2.632, 3.008,
3.384, 4.136, 4.888],
atol=0.001)
# Check layers along 111
tags, levels = get_layers(al001, (1, 1, 1))
assert np.allclose(tags, [0, 2, 2, 4, 1, 5, 5, 6, 3, 7])
assert np.allclose(levels, [0.000, 1.102, 1.929, 2.205, 2.756, 3.031, 3.858,
4.960],
atol=0.001)
# Cut out slab of three Al(111) layers
al111 = cut(al, (1, -1, 0), (0, 1, -1), nlayers=3)
correct_pos = np.array([[0.5, 0., 0.],
[0., 0.5, 0.],
[0.5, 0.5, 0.],
[0., 0., 0.],
[1 / 6., 1 / 3., 1 / 3.],
[1 / 6., 5 / 6., 1 / 3.],
[2 / 3., 5 / 6., 1 / 3.],
[2 / 3., 1 / 3., 1 / 3.],
[1 / 3., 1 / 6., 2 / 3.],
[5 / 6., 1 / 6., 2 / 3.],
[5 / 6., 2 / 3., 2 / 3.],
[1 / 3., 2 / 3., 2 / 3.]])
assert np.allclose(correct_pos, al111.get_scaled_positions())
# Cut out cell including all corner and edge atoms (non-periodic structure)
al = cut(al, extend=1.1)
correct_pos = np.array([[0., 0., 0.],
[0., 2.025, 2.025],
[2.025, 0., 2.025],
[2.025, 2.025, 0.],
[0., 0., 4.05],
[2.025, 2.025, 4.05],
[0., 4.05, 0.],
[2.025, 4.05, 2.025],
[0., 4.05, 4.05],
[4.05, 0., 0.],
[4.05, 2.025, 2.025],
[4.05, 0., 4.05],
[4.05, 4.05, 0.],
[4.05, 4.05, 4.05]])
assert np.allclose(correct_pos, al.positions)
# Create an Ag(111)/Si(111) interface
ag = crystal(['Ag'], basis=[(0, 0, 0)], spacegroup=225, cellpar=4.09)
si = crystal(['Si'], basis=[(0, 0, 0)], spacegroup=227, cellpar=5.43)
ag111 = cut(ag, a=(4, -4, 0), b=(4, 4, -8), nlayers=5)
si111 = cut(si, a=(3, -3, 0), b=(3, 3, -6), nlayers=5)
#
# interface = stack(ag111, si111)
# assert len(interface) == 1000
# assert np.allclose(interface.positions[::100],
# [[ 4.08125 , -2.040625 , -2.040625 ],
# [ 8.1625 , 6.121875 , -14.284375 ],
# [ 10.211875 , 0.00875 , 2.049375 ],
# [ 24.49041667, -4.07833333, -16.32208333],
# [ 18.37145833, 14.29020833, -24.48166667],
# [ 24.49916667, 12.25541667, -20.39458333],
# [ 18.36854167, 16.32791667, -30.60645833],
# [ 19.0575 , 0.01166667, 5.45333333],
# [ 23.13388889, 6.80888889, 1.36722222],
# [ 35.3825 , 5.45333333, -16.31333333]])
#
# Test the wrap_positions function.
positions = np.array([
[4.0725, -4.0725, -1.3575],
[1.3575, -1.3575, -1.3575],
[2.715, -2.715, 0.],
[4.0725, 1.3575, -1.3575],
[0., 0., 0.],
[2.715, 2.715, 0.],
[6.7875, -1.3575, -1.3575],
[5.43, 0., 0.]])
cell = np.array([[5.43, 5.43, 0.0], [5.43, -5.43, 0.0], [0.00, 0.00, 40.0]])
positions += np.array([6.1, -0.1, 10.1])
result_positions = wrap_positions(positions=positions, cell=cell)
correct_pos = np.array([
[4.7425, 1.2575, 8.7425],
[7.4575, -1.4575, 8.7425],
[3.385, 2.615, 10.1],
[4.7425, -4.1725, 8.7425],
[6.1, -0.1, 10.1],
[3.385, -2.815, 10.1],
[2.0275, -1.4575, 8.7425],
[0.67, -0.1, 10.1]])
assert np.allclose(correct_pos, result_positions)
positions = wrap_positions(positions, cell, pbc=[False, True, False])
correct_pos = np.array([
[4.7425, 1.2575, 8.7425],
[7.4575, -1.4575, 8.7425],
[3.385, 2.615, 10.1],
[10.1725, 1.2575, 8.7425],
[6.1, -0.1, 10.1],
[8.815, 2.615, 10.1],
[7.4575, 3.9725, 8.7425],
[6.1, 5.33, 10.1]])
assert np.allclose(correct_pos, positions)
# Test center away from values 0, 0.5
result_positions = wrap_positions(positions, cell,
pbc=[True, True, False],
center=0.2)
correct_pos = [[4.7425, 1.2575, 8.7425],
[2.0275, 3.9725, 8.7425],
[3.385, 2.615, 10.1],
[-0.6875, 1.2575, 8.7425],
[6.1, -0.1, 10.1],
[3.385, -2.815, 10.1],
[2.0275, -1.4575, 8.7425],
[0.67, -0.1, 10.1]]
assert np.allclose(correct_pos, result_positions)
# Get the correct crystal structure from a range of different cells
assert crystal_structure_from_cell(bulk('Al').get_cell()) == 'fcc'
assert crystal_structure_from_cell(bulk('Fe').get_cell()) == 'bcc'
assert crystal_structure_from_cell(bulk('Zn').get_cell()) == 'hexagonal'
cell = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
assert crystal_structure_from_cell(cell) == 'cubic'
cell = [[1, 0, 0], [0, 1, 0], [0, 0, 2]]
assert crystal_structure_from_cell(cell) == 'tetragonal'
cell = [[1, 0, 0], [0, 2, 0], [0, 0, 3]]
assert crystal_structure_from_cell(cell) == 'orthorhombic'
cell = [[1, 0, 0], [0, 2, 0], [0, 1, 3]]
assert crystal_structure_from_cell(cell) == 'monoclinic'
|