File: geometry.py

package info (click to toggle)
python-ase 3.12.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,192 kB
  • ctags: 8,112
  • sloc: python: 93,375; sh: 99; makefile: 94
file content (166 lines) | stat: -rw-r--r-- 6,490 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""Test the ase.geometry module and ase.build.cut() function."""

from __future__ import division

import numpy as np

from ase.build import cut, bulk
from ase.geometry import (get_layers, wrap_positions,
                          crystal_structure_from_cell)
from ase.spacegroup import crystal

al = crystal('Al', [(0, 0, 0)], spacegroup=225, cellpar=4.05)

# Cut out slab of 5 Al(001) layers
al001 = cut(al, nlayers=5)
correct_pos = np.array([[0., 0., 0.],
                        [0., 0.5, 0.2],
                        [0.5, 0., 0.2],
                        [0.5, 0.5, 0.],
                        [0., 0., 0.4],
                        [0., 0.5, 0.6],
                        [0.5, 0., 0.6],
                        [0.5, 0.5, 0.4],
                        [0., 0., 0.8],
                        [0.5, 0.5, 0.8]])
assert np.allclose(correct_pos, al001.get_scaled_positions())

# Check layers along 001
tags, levels = get_layers(al001, (0, 0, 1))
assert np.allclose(tags, [0, 1, 1, 0, 2, 3, 3, 2, 4, 4])
assert np.allclose(levels, [0., 2.025, 4.05, 6.075, 8.1])

# Check layers along 101
tags, levels = get_layers(al001, (1, 0, 1))
assert np.allclose(tags, [0, 1, 5, 3, 2, 4, 8, 7, 6, 9])
assert np.allclose(levels, [0.000, 0.752, 1.504, 1.880, 2.256, 2.632, 3.008,
                            3.384, 4.136, 4.888],
                   atol=0.001)

# Check layers along 111
tags, levels = get_layers(al001, (1, 1, 1))
assert np.allclose(tags, [0, 2, 2, 4, 1, 5, 5, 6, 3, 7])
assert np.allclose(levels, [0.000, 1.102, 1.929, 2.205, 2.756, 3.031, 3.858,
                            4.960],
                   atol=0.001)

# Cut out slab of three Al(111) layers
al111 = cut(al, (1, -1, 0), (0, 1, -1), nlayers=3)
correct_pos = np.array([[0.5, 0., 0.],
                        [0., 0.5, 0.],
                        [0.5, 0.5, 0.],
                        [0., 0., 0.],
                        [1 / 6., 1 / 3., 1 / 3.],
                        [1 / 6., 5 / 6., 1 / 3.],
                        [2 / 3., 5 / 6., 1 / 3.],
                        [2 / 3., 1 / 3., 1 / 3.],
                        [1 / 3., 1 / 6., 2 / 3.],
                        [5 / 6., 1 / 6., 2 / 3.],
                        [5 / 6., 2 / 3., 2 / 3.],
                        [1 / 3., 2 / 3., 2 / 3.]])
assert np.allclose(correct_pos, al111.get_scaled_positions())

# Cut out cell including all corner and edge atoms (non-periodic structure)
al = cut(al, extend=1.1)
correct_pos = np.array([[0., 0., 0.],
                        [0., 2.025, 2.025],
                        [2.025, 0., 2.025],
                        [2.025, 2.025, 0.],
                        [0., 0., 4.05],
                        [2.025, 2.025, 4.05],
                        [0., 4.05, 0.],
                        [2.025, 4.05, 2.025],
                        [0., 4.05, 4.05],
                        [4.05, 0., 0.],
                        [4.05, 2.025, 2.025],
                        [4.05, 0., 4.05],
                        [4.05, 4.05, 0.],
                        [4.05, 4.05, 4.05]])
assert np.allclose(correct_pos, al.positions)

# Create an Ag(111)/Si(111) interface
ag = crystal(['Ag'], basis=[(0, 0, 0)], spacegroup=225, cellpar=4.09)
si = crystal(['Si'], basis=[(0, 0, 0)], spacegroup=227, cellpar=5.43)

ag111 = cut(ag, a=(4, -4, 0), b=(4, 4, -8), nlayers=5)
si111 = cut(si, a=(3, -3, 0), b=(3, 3, -6), nlayers=5)
#
# interface = stack(ag111, si111)
# assert len(interface) == 1000
# assert np.allclose(interface.positions[::100],
#                   [[  4.08125   ,  -2.040625  ,   -2.040625  ],
#                    [  8.1625    ,   6.121875  ,  -14.284375  ],
#                    [ 10.211875  ,   0.00875   ,    2.049375  ],
#                    [ 24.49041667,  -4.07833333,  -16.32208333],
#                    [ 18.37145833,  14.29020833,  -24.48166667],
#                    [ 24.49916667,  12.25541667,  -20.39458333],
#                    [ 18.36854167,  16.32791667,  -30.60645833],
#                    [ 19.0575    ,   0.01166667,    5.45333333],
#                    [ 23.13388889,   6.80888889,    1.36722222],
#                    [ 35.3825    ,   5.45333333,  -16.31333333]])
#

# Test the wrap_positions function.
positions = np.array([
    [4.0725, -4.0725, -1.3575],
    [1.3575, -1.3575, -1.3575],
    [2.715, -2.715, 0.],
    [4.0725, 1.3575, -1.3575],
    [0., 0., 0.],
    [2.715, 2.715, 0.],
    [6.7875, -1.3575, -1.3575],
    [5.43, 0., 0.]])
cell = np.array([[5.43, 5.43, 0.0], [5.43, -5.43, 0.0], [0.00, 0.00, 40.0]])
positions += np.array([6.1, -0.1, 10.1])
result_positions = wrap_positions(positions=positions, cell=cell)
correct_pos = np.array([
    [4.7425, 1.2575, 8.7425],
    [7.4575, -1.4575, 8.7425],
    [3.385, 2.615, 10.1],
    [4.7425, -4.1725, 8.7425],
    [6.1, -0.1, 10.1],
    [3.385, -2.815, 10.1],
    [2.0275, -1.4575, 8.7425],
    [0.67, -0.1, 10.1]])
assert np.allclose(correct_pos, result_positions)

positions = wrap_positions(positions, cell, pbc=[False, True, False])
correct_pos = np.array([
    [4.7425, 1.2575, 8.7425],
    [7.4575, -1.4575, 8.7425],
    [3.385, 2.615, 10.1],
    [10.1725, 1.2575, 8.7425],
    [6.1, -0.1, 10.1],
    [8.815, 2.615, 10.1],
    [7.4575, 3.9725, 8.7425],
    [6.1, 5.33, 10.1]])
assert np.allclose(correct_pos, positions)

# Test center away from values 0, 0.5
result_positions = wrap_positions(positions, cell,
                                  pbc=[True, True, False],
                                  center=0.2)
correct_pos = [[4.7425, 1.2575, 8.7425],
               [2.0275, 3.9725, 8.7425],
               [3.385, 2.615, 10.1],
               [-0.6875, 1.2575, 8.7425],
               [6.1, -0.1, 10.1],
               [3.385, -2.815, 10.1],
               [2.0275, -1.4575, 8.7425],
               [0.67, -0.1, 10.1]]
assert np.allclose(correct_pos, result_positions)

# Get the correct crystal structure from a range of different cells
assert crystal_structure_from_cell(bulk('Al').get_cell()) == 'fcc'
assert crystal_structure_from_cell(bulk('Fe').get_cell()) == 'bcc'
assert crystal_structure_from_cell(bulk('Zn').get_cell()) == 'hexagonal'
cell = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
assert crystal_structure_from_cell(cell) == 'cubic'
cell = [[1, 0, 0], [0, 1, 0], [0, 0, 2]]
assert crystal_structure_from_cell(cell) == 'tetragonal'
cell = [[1, 0, 0], [0, 2, 0], [0, 0, 3]]
assert crystal_structure_from_cell(cell) == 'orthorhombic'
cell = [[1, 0, 0], [0, 2, 0], [0, 1, 3]]
assert crystal_structure_from_cell(cell) == 'monoclinic'