File: tools.py

package info (click to toggle)
python-ase 3.12.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,192 kB
  • ctags: 8,112
  • sloc: python: 93,375; sh: 99; makefile: 94
file content (449 lines) | stat: -rw-r--r-- 14,442 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
from __future__ import print_function
import numpy as np
from math import sqrt


def tri2full(H_nn, UL='L'):
    """Fill in values of hermitian matrix.

    Fill values in lower or upper triangle of H_nn based on the opposite
    triangle, such that the resulting matrix is symmetric/hermitian.

    UL='U' will copy (conjugated) values from upper triangle into the
    lower triangle.

    UL='L' will copy (conjugated) values from lower triangle into the
    upper triangle.
    """
    N, tmp = H_nn.shape
    assert N == tmp, 'Matrix must be square'
    # assert np.isreal(H_nn.diagonal()).all(), 'Diagonal should be real'
    if UL != 'L':
        H_nn = H_nn.T

    for n in range(N - 1):
        H_nn[n, n + 1:] = H_nn[n + 1:, n].conj()

        
def dagger(matrix):
    return np.conj(matrix.T)

    
def rotate_matrix(h, u):
    return np.dot(u.T.conj(), np.dot(h, u))

    
def get_subspace(matrix, index):
    """Get the subspace spanned by the basis function listed in index"""
    assert matrix.ndim == 2 and matrix.shape[0] == matrix.shape[1]
    return matrix.take(index, 0).take(index, 1)

permute_matrix = get_subspace


def normalize(matrix, S=None):
    """Normalize column vectors.

    ::

      <matrix[:,i]| S |matrix[:,i]> = 1

    """
    for col in matrix.T:
        if S is None:
            col /= np.linalg.norm(col)
        else:
            col /= np.sqrt(np.dot(col.conj(), np.dot(S, col)))

            
def subdiagonalize(h_ii, s_ii, index_j):
    nb = h_ii.shape[0]
    nb_sub = len(index_j)
    h_sub_jj = get_subspace(h_ii, index_j)
    s_sub_jj = get_subspace(s_ii, index_j)
    e_j, v_jj = np.linalg.eig(np.linalg.solve(s_sub_jj, h_sub_jj))
    normalize(v_jj, s_sub_jj)  # normalize: <v_j|s|v_j> = 1
    permute_list = np.argsort(e_j.real)
    e_j = np.take(e_j, permute_list)
    v_jj = np.take(v_jj, permute_list, axis=1)
    
    # Setup transformation matrix
    c_ii = np.identity(nb, complex)
    for i in range(nb_sub):
        for j in range(nb_sub):
            c_ii[index_j[i], index_j[j]] = v_jj[i, j]

    h1_ii = rotate_matrix(h_ii, c_ii)
    s1_ii = rotate_matrix(s_ii, c_ii)

    return h1_ii, s1_ii, c_ii, e_j

    
def cutcoupling(h, s, index_n):
    for i in index_n:
        s[:, i] = 0.0
        s[i, :] = 0.0
        s[i, i] = 1.0
        Ei = h[i, i]
        h[:, i] = 0.0
        h[i, :] = 0.0
        h[i, i] = Ei

        
def fermidistribution(energy, kt):
    # fermi level is fixed to zero
    return 1.0 / (1.0 + np.exp(energy / kt))

    
def fliplr(a):
    length = len(a)
    b = [0] * length
    for i in range(length):
        b[i] = a[length - i - 1]
    return b

    
def plot_path(energy):
    import pylab
    pylab.plot(np.real(energy), np.imag(energy), 'b--o')
    pylab.show()
    

def function_integral(function, calcutype):
    # return the integral of the 'function' on 'intrange'
    # the function can be a value or a matrix, arg1,arg2 are the possible
    # parameters of the function
    
    intctrl = function.intctrl
    if calcutype == 'eqInt':
        intrange = intctrl.eqintpath
        tol = intctrl.eqinttol
        if hasattr(function.intctrl, 'eqpath_radius'):
            radius = function.intctrl.eqpath_radius
        else:
            radius = -1
        if hasattr(function.intctrl, 'eqpath_origin'):
            origin = function.intctrl.eqpath_origin
        else:
            origin = 1000
    elif calcutype == 'neInt':
        intrange = intctrl.neintpath
        tol = intctrl.neinttol
        radius = -1
        origin = 1000
    elif calcutype == 'locInt':
        intrange = intctrl.locintpath
        tol = intctrl.locinttol
        if hasattr(function.intctrl, 'locpath_radius'):
            radius = function.intctrl.locpath_radius
        else:
            radius = -1
        if hasattr(function.intctrl, 'locpath_origin'):
            origin = function.intctrl.locpath_origin
        else:
            origin = 1000
    trace = 0
    a = 0.
    b = 1.

    # Initialize with 13 function evaluations.
    c = (a + b) / 2
    h = (b - a) / 2
    realmin = 2e-17

    s = [.942882415695480, sqrt(2.0 / 3),
         .641853342345781, 1 / sqrt(5.0), .236383199662150]
    s1 = [0] * len(s)
    s2 = [0] * len(s)
    for i in range(len(s)):
        s1[i] = c - s[i] * h
        s2[i] = c + fliplr(s)[i] * h
    x0 = [a] + s1 + [c] + s2 + [b]

    s0 = [.0158271919734802, .094273840218850, .155071987336585,
          .188821573960182, .199773405226859, .224926465333340]
    w0 = s0 + [.242611071901408] + fliplr(s0)
    w1 = [1, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 1]
    w2 = [77, 0, 432, 0, 625, 0, 672, 0, 625, 0, 432, 0, 77]
    for i in range(len(w1)):
        w1[i] = w1[i] / 6.0
        w2[i] = w2[i] / 1470.0
                                                        
    dZ = [intrange[:len(intrange) - 1], intrange[1:]]
    hmin = [0] * len(dZ[1])

    path_type = []
    for i in range(len(intrange) - 1):
        rs = np.abs(dZ[0][i] - origin)
        re = np.abs(dZ[1][i] - origin)
        if abs(rs - radius) < 1.0e-8 and abs(re - radius) < 1.0e-8:
            path_type.append('half_circle')
        else:
            path_type.append('line')
   
    for i in range(len(dZ[1])):
        if path_type[i] == 'half_circle':
            dZ[0][i] = 0
            dZ[1][i] = np.pi
    for i in range(len(dZ[1])):
        dZ[1][i] = dZ[1][i] - dZ[0][i]
        hmin[i] = realmin / 1024 * abs(dZ[1][i])

    temp = np.array([[1] * 13, x0]).transpose()
    
    Zx = np.dot(temp, np.array(dZ))
      
    Zxx = []
    for i in range(len(intrange) - 1):
        for j in range(13):
            Zxx.append(Zx[j][i])

    ns = 0
    ne = 12
    if path_type[0] == 'line':
        yns = function.calgfunc(Zxx[ns], calcutype)
    elif path_type[0] == 'half_circle':
        energy = origin + radius * np.exp((np.pi - Zxx[ns + i]) * 1.j)
        yns = (-1.j * radius * np.exp(-1.j * Zxx[ns + i]) *
               function.calgfunc(energy, calcutype))
    fcnt = 0
    
    for n in range(len(intrange) - 1):
        # below evaluate the integral and adjust the tolerance
        Q1pQ0 = yns * (w1[0] - w0[0])
        Q2pQ0 = yns * (w2[0] - w0[0])
        fcnt = fcnt + 12
        for i in range(1, 12):
            if path_type[n] == 'line':
                yne = function.calgfunc(Zxx[ns + i], calcutype)
            elif path_type[n] == 'half_circle':
                energy = origin + radius * np.exp((np.pi - Zxx[ns + i]) * 1.j)
                yne = (-1.j * radius * np.exp(-1.j * Zxx[ns + i]) *
                       function.calgfunc(energy, calcutype))
            Q1pQ0 += yne * (w1[i] - w0[i])
            Q2pQ0 += yne * (w2[i] - w0[i])

        # Increase the tolerance if refinement appears to be effective
        r = np.abs(Q2pQ0) / (np.abs(Q1pQ0) + np.abs(realmin))
        dim = np.product(r.shape)
        r = np.sum(r) / dim
        if r > 0 and r < 1:
            thistol = tol / r
        else:
            thistol = tol
        if path_type[n] == 'line':
            yne = function.calgfunc(Zxx[ne], calcutype)
        elif path_type[n] == 'half_circle':
            energy = origin + radius * np.exp((np.pi - Zxx[ne]) * 1.j)
            yne = (-1.j * radius * np.exp(-1.j * Zxx[ne]) *
                   function.calgfunc(energy, calcutype))
        # Call the recursive core integrator
       
        Qk, xpk, wpk, fcnt, warn = quadlstep(function, Zxx[ns],
                                             Zxx[ne], yns, yne,
                                             thistol, trace, fcnt,
                                             hmin[n], calcutype, path_type[n],
                                             origin, radius)
        if n == 0:
            Q = np.copy(Qk)
            Xp = xpk[:]
            Wp = wpk[:]
        else:
            Q += Qk
            Xp = Xp[:-1] + xpk
            Wp = Wp[:-1] + [Wp[-1] + wpk[0]] + wpk[1:]
        if warn == 1:
            print('warning: Minimum step size reached,singularity possible')
        elif warn == 2:
            print('warning: Maximum function count excced; singularity likely')
        elif warn == 3:
            print('warning: Infinite or Not-a-Number function value '
                  'encountered')
        else:
            pass
        
        ns += 13
        ne += 13
        yns = np.copy(yne)
      
    return Q, Xp, Wp, fcnt

    
def quadlstep(f, Za, Zb, fa, fb, tol, trace, fcnt, hmin, calcutype,
              path_type, origin, radius):
    # Gaussian-Lobatto and Kronrod method
    # QUADLSTEP Recursive core routine for integral
    # input parameters:
    #      f      ----------   function, here we just use the module calgfunc
    #                          to return the value, if wanna use it for
    #                          another one, change it
    #     Za, Zb  ----------   the start and end point of the integral
    #     fa, fb  ----------   the function value on Za and Zb
    #     fcnt    ----------   the number of the function recalled till now
    # output parameters:
    #      Q      ----------   integral
    #     Xp      ----------   selected points
    #     Wp      ----------   weight
    #    fcnt     ----------   the number of the function recalled till now

    maxfcnt = 10000

    # Evaluate integrand five times in interior of subintrval [a,b]
    Zh = (Zb - Za) / 2.0
    if abs(Zh) < hmin:
        # Minimun step size reached; singularity possible
        Q = Zh * (fa + fb)
        if path_type == 'line':
            Xp = [Za, Zb]
        elif path_type == 'half_circle':
            Xp = [origin + radius * np.exp((np.pi - Za) * 1.j),
                  origin + radius * np.exp((np.pi - Zb) * 1.j)]
        Wp = [Zh, Zh]
        warn = 1
        return Q, Xp, Wp, fcnt, warn
    fcnt += 5
    if fcnt > maxfcnt:
        # Maximum function count exceed; singularity likely
        Q = Zh * (fa + fb)
        if path_type == 'line':
            Xp = [Za, Zb]
        elif path_type == 'half_circle':
            Xp = [origin + radius * np.exp((np.pi - Za) * 1.j),
                  origin + radius * np.exp((np.pi - Zb) * 1.j)]
        Wp = [Zh, Zh]
        warn = 2
        return Q, Xp, Wp, fcnt, warn
    x = [0.18350341907227, 0.55278640450004, 1.0,
         1.44721359549996, 1.81649658092773]
    Zx = [0] * len(x)
    y = [0] * len(x)
    for i in range(len(x)):
        x[i] *= 0.5
        Zx[i] = Za + (Zb - Za) * x[i]
        if path_type == 'line':
            y[i] = f.calgfunc(Zx[i], calcutype)
        elif path_type == 'half_circle':
            energy = origin + radius * np.exp((np.pi - Zx[i]) * 1.j)
            y[i] = f.calgfunc(energy, calcutype)
    # Four point Lobatto quadrature
    s1 = [1.0, 0.0, 5.0, 0.0, 5.0, 0.0, 1.0]
    s2 = [77.0, 432.0, 625.0, 672.0, 625.0, 432.0, 77.0]
    Wk = [0] * 7
    Wp = [0] * 7
    for i in range(7):
        Wk[i] = (Zh / 6.0) * s1[i]
        Wp[i] = (Zh / 1470.0) * s2[i]
    if path_type == 'line':
        Xp = [Za] + Zx + [Zb]
    elif path_type == 'half_circle':
        Xp = [Za] + Zx + [Zb]
        for i in range(7):
            factor = -1.j * radius * np.exp(1.j * (np.pi - Xp[i]))
            Wk[i] *= factor
            Wp[i] *= factor
            Xp[i] = origin + radius * np.exp((np.pi - Xp[i]) * 1.j)
    Qk = fa * Wk[0] + fb * Wk[6]
    Q = fa * Wp[0] + fb * Wp[6]
    for i in range(1, 6):
        Qk += y[i - 1] * Wk[i]
        Q += y[i - 1] * Wp[i]
    if np.isinf(np.max(np.abs(Q))):
        Q = Zh * (fa + fb)
        if path_type == 'line':
            Xp = [Za, Zb]
        elif path_type == 'half_circle':
            Xp = [origin + radius * np.exp((np.pi - Za) * 1.j),
                  origin + radius * np.exp((np.pi - Zb) * 1.j)]
        Wp = [Zh, Zh]
        warn = 3
        return Qk, Xp, Wp, fcnt, warn
    else:
        pass
    if trace:
        print(fcnt, np.real(Za), np.imag(Za), np.abs(Zh))
    # Check accurancy of integral over this subinterval
    XXk = [Xp[0], Xp[2], Xp[4], Xp[6]]
    WWk = [Wk[0], Wk[2], Wk[4], Wk[6]]
    YYk = [fa, y[1], y[3], fb]
    if np.max(np.abs(Qk - Q)) <= tol:
        warn = 0
        return Q, XXk, WWk, fcnt, warn
    # Subdivide into six subintevals
    else:
        Q, Xk, Wk, fcnt, warn = quadlstep(f, Za, Zx[1], fa, YYk[1],
                                          tol, trace, fcnt, hmin,
                                          calcutype, path_type,
                                          origin, radius)

        Qk, xkk, wkk, fcnt, warnk = quadlstep(
            f, Zx[1],
            Zx[3], YYk[1], YYk[2], tol, trace, fcnt, hmin,
            calcutype, path_type,
            origin, radius)
        Q += Qk
        Xk = Xk[:-1] + xkk
        Wk = Wk[:-1] + [Wk[-1] + wkk[0]] + wkk[1:]
        warn = max(warn, warnk)
        
        Qk, xkk, wkk, fcnt, warnk = quadlstep(f, Zx[3], Zb, YYk[2], fb,
                                              tol, trace, fcnt, hmin,
                                              calcutype, path_type,
                                              origin, radius)
        Q += Qk
        Xk = Xk[:-1] + xkk
        Wk = Wk[:-1] + [Wk[-1] + wkk[0]] + wkk[1:]
        warn = max(warn, warnk)
    return Q, Xk, Wk, fcnt, warn

    
def mytextread0(filename):
    num = 0
    df = open(filename)
    df.seek(0)
    for line in df:
        if num == 0:
            dim = line.strip().split(' ')
            row = int(dim[0])
            col = int(dim[1])
            mat = np.empty([row, col])
        else:
            data = line.strip().split(' ')
            if len(data) == 0 or len(data) == 1:
                break
            else:
                for i in range(len(data)):
                    mat[num - 1, i] = float(data[i])
        num += 1
    return mat

    
def mytextread1(filename):
    num = 0
    df = open(filename)
    df.seek(0)
    data = []
    for line in df:
        tmp = line.strip()
        if len(tmp) != 0:
            data.append(float(tmp))
        else:
            break
    dim = int(sqrt(len(data)))
    mat = np.empty([dim, dim])
    for i in range(dim):
        for j in range(dim):
            mat[i, j] = data[num]
            num += 1
    return mat

    
def mytextwrite1(filename, mat):
    df = open(filename, 'w')
    df.seek(0)
    dim = mat.shape[0]
    if dim != mat.shape[1]:
        print('matwirte, matrix is not square')
    for i in range(dim):
        for j in range(dim):
            df.write('%20.20e\n' % mat[i, j])
    df.close()