1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
from __future__ import print_function
import logging
import math
import numpy as np
###CO <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
try:
import scipy
import scipy.linalg
have_scipy = True
except ImportError:
have_scipy = False
#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
from ase.utils import longsum
logger = logging.getLogger(__name__)
###CO <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
class LinearPath:
"""Describes a linear search path of the form t -> t g
"""
def __init__(self, dirn):
"""Initialise LinearPath object
Args:
dirn : search direction
"""
self.dirn = dirn
def step(self, alpha):
return alpha * self.dirn
def nullspace(A, myeps=1e-10):
"""The RumPath class needs the ability to compute the null-space of
a small matrix. This is provided here. But we now also need scipy!
This routine was copy-pasted from
http://stackoverflow.com/questions/5889142/python-numpy-scipy-finding-the-null-space-of-a-matrix
How the h*** does numpy/scipy not have a null-space implemented?
"""
u, s, vh = scipy.linalg.svd(A)
padding = max(0, np.shape(A)[1] - np.shape(s)[0])
null_mask = np.concatenate(((s <= myeps),
np.ones((padding,),dtype=bool)),
axis=0)
null_space = scipy.compress(null_mask, vh, axis=0)
return scipy.transpose(null_space)
class RumPath:
"""Describes a curved search path, taking into account information
about (near-) rigid unit motions (RUMs).
One can tag sub-molecules of the system, which are collections of
particles that form a (near-)rigid unit. Let x1, ... xn be the positions
of one such molecule, then we construct a path of the form
xi(t) = xi(0) + (exp(K t) - I) yi + t wi + t c
where yi = xi - <x>, c = <g> is a rigid translation, K is anti-symmetric
so that exp(tK) yi denotes a rotation about the centre of mass, and wi
is the remainind stretch of the molecule.
The following variables are stored:
* rotation_factors : array of acceleration factors
* rigid_units : array of molecule indices
* stretch : w
* K : list of K matrices
* y : list of y-vectors
"""
def __init__(self, x_start, dirn, rigid_units, rotation_factors):
"""Initialise a `RumPath`
Args:
x_start : vector containing the positions in d x nAt shape
dirn : search direction, same shape as x_start vector
rigid_units : array of arrays of molecule indices
rotation_factors : factor by which the rotation of each molecular
is accelerated; array of scalars, same length as
rigid_units
"""
if not have_scipy:
raise RuntimeError("RumPath depends on scipy, which could not be imported")
# keep some stuff stored
self.rotation_factors = rotation_factors
self.rigid_units = rigid_units
# create storage for more stuff
self.K = []
self.y = []
# We need to reshape x_start and dirn since we want to apply
# rotations to individual position vectors!
# we will eventually store the stretch in w, X is just a reference
# to x_start with different shape
w = dirn.copy().reshape( [3, len(dirn)/3] )
X = x_start.reshape( [3, len(dirn)/3] )
for I in rigid_units: # I is a list of indices for one molecule
# get the positions of the i-th molecule, subtract mean
x = X[:, I]
y = x - x.mean(0).T # PBC?
# same for forces >>> translation component
g = w[:, I]
f = g - g.mean(0).T
# compute the system to solve for K (see accompanying note!)
# A = \sum_j Yj Yj'
# b = \sum_j Yj' fj
A = np.zeros((3,3))
b = np.zeros(3)
for j in range(len(I)):
Yj = np.array( [ [ y[1,j], 0.0, -y[2,j] ],
[ -y[0,j], y[2,j], 0.0 ],
[ 0.0, -y[1,j], y[0,j] ] ] )
A += np.dot(Yj.T, Yj)
b += np.dot(Yj.T, f[:, j])
# If the directions y[:,j] span all of R^3 (canonically this is true
# when there are at least three atoms in the molecule) but if
# not, then A is singular so we cannot solve A k = b. In this case
# we solve Ak = b in the space orthogonal to the null-space of A.
# TODO:
# this can get unstable if A is "near-singular"! We may
# need to revisit this idea at some point to get something
# more robust
N = nullspace(A)
b -= np.dot(np.dot(N, N.T), b)
A += np.dot(N, N.T)
k = scipy.linalg.solve(A, b, sym_pos=True)
K = np.array( [ [ 0.0, k[0], -k[2] ],
[ -k[0], 0.0, k[1] ],
[ k[2], -k[1], 0.0 ] ] )
# now remove the rotational component from the search direction
# ( we actually keep the translational component as part of w,
# but this could be changed as well! )
w[:, I] -= np.dot(K, y)
# store K and y
self.K.append(K)
self.y.append(y)
# store the stretch (no need to copy here, since w is already a copy)
self.stretch = w
def step(self, alpha):
"""perform a step in the line-search, given a step-length alpha
Args:
alpha : step-length
Returns:
s : update for positions
"""
# translation and stretch
s = alpha * self.stretch
# loop through rigid_units
for (I, K, y, rf) in zip(self.rigid_units, self.K, self.y,
self.rotation_factors):
# with matrix exponentials:
# s[:, I] += expm(K * alpha * rf) * p.y - p.y
# third-order taylor approximation:
# I + t K + 1/2 t^2 K^2 + 1/6 t^3 K^3 - I
# = t K (I + 1/2 t K (I + 1/3 t K))
aK = alpha * rf * K
s[:, I] += np.dot(aK, y + 0.5 * np.dot(aK, y + 1/3. * np.dot( aK, y )) )
return s.ravel()
#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
class LineSearchArmijo:
def __init__(self, func, c1=0.1, tol=1e-14):
"""Initialise the linesearch with set parameters and functions.
Args:
func: the function we are trying to minimise (energy), which should
take an array of positions for its argument
c1: parameter for the sufficient decrease condition \in (0.0 0.5)
tol: tolerance for evaluating equality
"""
self.tol = tol
self.func = func
if not (0 < c1 < 0.5):
logger.error("c1 outside of allowed interval (0, 0.5). Replacing with "
"default value.")
print("Warning: C1 outside of allowed interval. Replacing with "
"default value.")
c1 = 0.1
self.c1 = c1
###CO : added rigid_units and rotation_factors
def run(self, x_start, dirn, a_max=None, a1=None, func_start=None,
func_old=None, func_prime_start=None,
rigid_units=None, rotation_factors=None):
"""Perform a backtracking / quadratic-interpolation linesearch
to find an appropriate step length with Armijo condition.
NOTE THIS LINESEARCH DOES NOT IMPOSE WOLFE CONDITIONS!
The idea is to do backtracking via quadratic interpolation, stabilised
by putting a lower bound on the decrease at each linesearch step.
To ensure BFGS-behaviour, whenever "reasonable" we take 1.0 as the
starting step.
Since Armijo does not guarantee convergence of BFGS, the outer
BFGS algorithm must restart when the current search direction
ceases to be a descent direction.
Args:
x_start: vector containing the position to begin the linesearch
from (ie the current location of the optimisation)
dirn: vector pointing in the direction to search in (pk in [NW]).
Note that this does not have to be a unit vector, but the
function will return a value scaled with respect to dirn.
a_max: an upper bound on the maximum step length allowed. Default is 2.0.
a1: the initial guess for an acceptable step length. If no value is
given, this will be set automatically, using quadratic
interpolation using func_old, or "rounded" to 1.0 if the
initial guess lies near 1.0. (specifically for LBFGS)
func_start: the value of func at the start of the linesearch, ie
phi(0). Passing this information avoids potentially expensive
re-calculations
func_prime_start: the value of func_prime at the start of the
linesearch (this will be dotted with dirn to find phi_prime(0))
func_old: the value of func_start at the previous step taken in
the optimisation (this will be used to calculate the initial
guess for the step length if it is not provided)
rigid_units, rotationfactors : see documentation of RumPath, if it is
unclear what these parameters are, then leave them at None
Returns:
A tuple: (step, func_val, no_update)
step: the final chosen step length, representing the number of
multiples of the direction vector to move
func_val: the value of func after taking this step, ie phi(step)
no_update: true if the linesearch has not performed any updates of
phi or alpha, due to errors or immediate convergence
Raises:
ValueError for problems with arguments
RuntimeError for problems encountered during iteration
"""
a1 = self.handle_args(x_start, dirn, a_max, a1, func_start, func_old,
func_prime_start)
# DEBUG
logger.debug("a1(auto) = ", a1)
if abs(a1 - 1.0) <= 0.5:
a1 = 1.0
logger.debug("-----------NEW LINESEARCH STARTED---------")
a_final = None
phi_a_final = None
num_iter = 0
###CO <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
# create a search-path
if rigid_units is None:
# standard linear search-path
logger.debug("-----using LinearPath-----")
path = LinearPath(dirn)
else:
logger.debug("-----using RumPath------")
# if rigid_units != None, but rotation_factors == None, then
# raise an error.
if rotation_factors == None:
raise RuntimeError('RumPath cannot be created since rotation_factors == None')
path = RumPath(x_start, dirn, rigid_units, rotation_factors)
#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
while(True):
logger.debug("-----------NEW ITERATION OF LINESEARCH----------")
logger.debug("Number of linesearch iterations: %d", num_iter)
logger.debug("a1 = %e", a1)
###CO replaced: func_a1 = self.func(x_start + a1 * self.dirn)
func_a1 = self.func(x_start + path.step(a1))
phi_a1 = func_a1
# compute sufficient decrease (Armijo) condition
suff_dec = (phi_a1 <= self.func_start+self.c1*a1*self.phi_prime_start)
# DEBUG
# print("c1*a1*phi_prime_start = ", self.c1*a1*self.phi_prime_start,
# " | phi_a1 - phi_0 = ", phi_a1 - self.func_start)
logger.info("a1 = %.3f, suff_dec = %r", a1, suff_dec)
if a1 < 1e-10:
raise RuntimeError('a1 too small, giving up')
if self.phi_prime_start > 0.0:
raise RuntimeError("self.phi_prime_start > 0.0")
# check sufficient decrease (Armijo condition)
if suff_dec:
a_final = a1
phi_a_final = phi_a1
logger.debug("Linesearch returned a = %e, phi_a = %e",
a_final, phi_a_final)
logger.debug("-----------LINESEARCH COMPLETE-----------")
return a_final, phi_a_final, num_iter==0
# we don't have sufficient decrease, so we need to compute a
# new trial step-length
at = - ((self.phi_prime_start * a1) /
(2*((phi_a1 - self.func_start)/a1 - self.phi_prime_start)))
logger.debug("quadratic_min: initial at = %e", at)
# because a1 does not satisfy Armijo it follows that at must
# lie between 0 and a1. In fact, more strongly,
# at \leq (2 (1-c1))^{-1} a1, which is a back-tracking condition
# therefore, we should now only check that at has not become too small,
# in which case it is likely that nonlinearity has played a big role
# here, so we take an ultra-conservative backtracking step
a1 = max( at, a1 / 10.0 )
if a1 > at:
logger.debug("at (%e) < a1/10: revert to backtracking a1/10", at)
# (end of while(True) line-search loop)
# (end of run())
def handle_args(self, x_start, dirn, a_max, a1, func_start, func_old,
func_prime_start):
"""Verify passed parameters and set appropriate attributes accordingly.
A suitable value for the initial step-length guess will be either
verified or calculated, stored in the attribute self.a_start, and
returned.
Args:
The args should be identical to those of self.run().
Returns:
The suitable initial step-length guess a_start
Raises:
ValueError for problems with arguments
"""
self.a_max = a_max
self.x_start = x_start
self.dirn = dirn
self.func_old = func_old
self.func_start = func_start
self.func_prime_start = func_prime_start
if a_max is None:
a_max = 2.0
if a_max < self.tol:
logger.warning("a_max too small relative to tol. Reverting to "
"default value a_max = 2.0 (twice the <ideal> step).")
a_max = 2.0 # THIS ASSUMES NEWTON/BFGS TYPE BEHAVIOUR!
if func_start is None:
logger.debug("Setting func_start")
self.func_start = self.func(x_start)
self.phi_prime_start = longsum(self.func_prime_start * self.dirn)
if self.phi_prime_start >= 0:
logger.error("Passed direction which is not downhill. Aborting...")
raise ValueError("Direction is not downhill.")
elif math.isinf(self.phi_prime_start):
logger.error("Passed func_prime_start and dirn which are too big. "
"Aborting...")
raise ValueError("func_prime_start and dirn are too big.")
if a1 is None:
if func_old is not None:
# Interpolating a quadratic to func and func_old - see NW
# equation 3.60
a1 = 2*(self.func_start - self.func_old)/self.phi_prime_start
logger.debug("Interpolated quadratic, obtained a1 = %e", a1)
if a1 is None or a1 > a_max:
logger.debug("a1 greater than a_max. Reverting to default value "
"a1 = 1.0")
a1 = 1.0
if a1 is None or a1 < self.tol:
logger.debug("a1 is None or a1 < self.tol. Reverting to default value "
"a1 = 1.0")
a1 = 1.0
self.a_start = a1
logger.debug("phi_start = %e, phi_prime_start = %e", self.func_start,
self.phi_prime_start)
logger.debug("func_start = %s, self.func_old = %s", self.func_start,
self.func_old)
logger.debug("a1 = %e, a_max = %e", a1, a_max)
return a1
|