File: franck_condon.py

package info (click to toggle)
python-ase 3.12.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,192 kB
  • ctags: 8,112
  • sloc: python: 93,375; sh: 99; makefile: 94
file content (250 lines) | stat: -rw-r--r-- 8,766 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from __future__ import division
from functools import reduce
from itertools import combinations, chain
from math import factorial
from operator import mul

import numpy as np

from ase.units import kg, C, _hbar, kB
from ase.vibrations import Vibrations


class FranckCondonOverlap:
    """Evaluate squared overlaps depending on the Huang-Rhys parameter."""
    def factorial(self, n):
        try:
            return self._fac[n]
        except AttributeError:
            self._fac = [1]
            return self.factorial(n)
        except IndexError:
            for i in range(len(self._fac), n + 1):
                self._fac.append(i * self._fac[i - 1])
            return self._fac[n]

    def directT0(self, n, S):
        """Direct squared Franck-Condon overlap corresponding to T=0."""
        return np.exp(-S) * S**n / self.factorial(n)

    def direct(self, n, m, S_in):
        """Direct squared Franck-Condon overlap."""
        if n > m:
            # use symmetry
            return self.direct(m, n, S_in)

        S = np.array([S_in])
        mask = np.where(S == 0)
        S[mask] = 1  # hide zeros
        s = 0
        for k in range(n + 1):
            s += (-1)**(n - k) * S**float(-k) / (
                self.factorial(k) *
                self.factorial(n - k) * self.factorial(m - k))
        res = np.exp(-S) * S**(n + m) * s**2 * (
            self.factorial(n) * self.factorial(m))
        # use othogonality
        res[mask] = int(n == m)
        return res[0]

    def direct0mm1(self, m, S):
        """<0|m><m|1>"""
        sum = S**m
        if m:
            sum -= m * S**(m - 1)
        return np.exp(-S) * np.sqrt(S) * sum / self.factorial(m)

    def direct0mm2(self, m, S):
        """<0|m><m|2>"""
        sum = S**(m + 1)
        if m >= 1:
            sum -= 2 * m * S**m
        if m >= 2:
            sum += m * (m - 1) * S**(m - 1)
        return np.exp(-S) / np.sqrt(2) * sum / self.factorial(m)


class FranckCondon:
    def __init__(self, atoms, vibname, minfreq=-np.inf, maxfreq=np.inf):
        """Input is a atoms object and the corresponding vibrations.
        With minfreq and maxfreq frequencies can
        be excluded from the calculation"""

        self.atoms = atoms
        # V = a * v is the combined atom and xyz-index
        self.mm05_V = np.repeat(1. / np.sqrt(atoms.get_masses()), 3)
        self.minfreq = minfreq
        self.maxfreq = maxfreq
        self.shape = (len(self.atoms), 3)

        vib = Vibrations(atoms, name=vibname)
        self.energies = np.real(vib.get_energies(method='frederiksen'))  # [eV]
        self.frequencies = np.real(
            vib.get_frequencies(method='frederiksen'))  # [cm^-1]
        self.modes = vib.modes
        self.H = vib.H

    def get_Huang_Rhys_factors(self, forces):
        """Evaluate Huang-Rhys factors and corresponding frequencies
        from forces on atoms in the exited electronic state.
        The double harmonic approximation is used. HR factors are
        the first approximation of FC factors,
        no combinations or higher quanta (>1) exitations are considered"""

        assert(forces.shape == self.shape)

        # Hesse matrix
        H_VV = self.H
        # sqrt of inverse mass matrix
        mm05_V = self.mm05_V
        # mass weighted Hesse matrix
        Hm_VV = mm05_V[:, None] * H_VV * mm05_V
        # mass weighted displacements
        Fm_V = forces.flat * mm05_V
        X_V = np.linalg.solve(Hm_VV, Fm_V)
        # projection onto the modes
        modes_VV = self.modes
        d_V = np.dot(modes_VV, X_V)
        # Huang-Rhys factors S
        s = 1.e-20 / kg / C / _hbar**2  # SI units
        S_V = s * d_V**2 * self.energies / 2

        # reshape for minfreq
        indices = np.where(self.frequencies <= self.minfreq)
        np.append(indices, np.where(self.frequencies >= self.maxfreq))
        S_V = np.delete(S_V, indices)
        frequencies = np.delete(self.frequencies, indices)

        return S_V, frequencies

    def get_Franck_Condon_factors(self, order, temp, forces):
        """Return FC factors and corresponding frequencies up to given order.

        order= number of quanta taken into account
        T= temperature in K. Vibronic levels are occupied by a
        Boltzman distribution.
        forces= forces on atoms in the exited electronic state"""

        S, f = self.get_Huang_Rhys_factors(forces)
        n = order + 1
        T = temp
        freq = np.array(f)

        # frequencies
        freq_n = [[] * i for i in range(n - 1)]
        freq_neg = [[] * i for i in range(n - 1)]

        for i in range(1, n):
            freq_n[i - 1] = freq * i
            freq_neg[i - 1] = freq * (-i)

        # combinations
        freq_nn = [x for x in combinations(chain(*freq_n), 2)]
        for i in range(len(freq_nn)):
            freq_nn[i] = freq_nn[i][0] + freq_nn[i][1]

        indices2 = []
        for i, y in enumerate(freq):
            ind = [j for j, x in enumerate(freq_nn) if x % y == 0]
            indices2.append(ind)
        indices2 = [x for x in chain(*indices2)]
        freq_nn = np.delete(freq_nn, indices2)

        frequencies = [[] * x for x in range(3)]
        frequencies[0].append(freq_neg[0])
        frequencies[0].append([0])
        frequencies[0].append(freq_n[0])
        frequencies[0] = [x for x in chain(*frequencies[0])]

        for i in range(1, n - 1):
            frequencies[1].append(freq_neg[i])
            frequencies[1].append(freq_n[i])
        frequencies[1] = [x for x in chain(*frequencies[1])]

        frequencies[2] = freq_nn

        # Franck-Condon factors
        E = freq / 8065.5
        f_n = [[] * i for i in range(n)]

        for j in range(0, n):
            f_n[j] = np.exp(-E * j / (kB * T))

        # partition function
        Z = np.empty(len(S))
        Z = np.sum(f_n, 0)

        # occupation probability
        w_n = [[] * k for k in range(n)]
        for l in range(n):
            w_n[l] = f_n[l] / Z

        # overlap wavefunctions
        O_n = [[] * m for m in range(n)]
        O_neg = [[] * m for m in range(n)]
        for o in range(n):
            O_n[o] = [[] * p for p in range(n)]
            O_neg[o] = [[] * p for p in range(n - 1)]
            for q in range(o, n + o):
                a = np.minimum(o, q)
                summe = []
                for k in range(a + 1):
                    s = ((-1)**(q - k) * np.sqrt(S)**(o + q - 2 * k) *
                         factorial(o) * factorial(q) /
                         (factorial(k) * factorial(o - k) * factorial(q - k)))
                    summe.append(s)
                summe = np.sum(summe, 0)
                O_n[o][q - o] = (np.exp(-S / 2) /
                                 (factorial(o) * factorial(q))**(0.5) *
                                 summe)**2 * w_n[o]
            for q in range(n - 1):
                O_neg[o][q] = [0 * b for b in range(len(S))]
            for q in range(o - 1, -1, -1):
                a = np.minimum(o, q)
                summe = []
                for k in range(a + 1):
                    s = ((-1)**(q - k) * np.sqrt(S)**(o + q - 2 * k) *
                         factorial(o) * factorial(q) /
                         (factorial(k) * factorial(o - k) * factorial(q - k)))
                    summe.append(s)
                summe = np.sum(summe, 0)
                O_neg[o][q] = (np.exp(-S / 2) /
                               (factorial(o) * factorial(q))**(0.5) *
                               summe)**2 * w_n[o]
        O_neg = np.delete(O_neg, 0, 0)

        # Franck-Condon factors
        FC_n = [[] * i for i in range(n)]
        FC_n = np.sum(O_n, 0)
        zero = reduce(mul, FC_n[0])
        FC_neg = [[] * i for i in range(n - 2)]
        FC_neg = np.sum(O_neg, 0)
        FC_n = np.delete(FC_n, 0, 0)

        # combination FC factors
        FC_nn = [x for x in combinations(chain(*FC_n), 2)]
        for i in range(len(FC_nn)):
            FC_nn[i] = FC_nn[i][0] * FC_nn[i][1]

        FC_nn = np.delete(FC_nn, indices2)

        FC = [[] * x for x in range(3)]
        FC[0].append(FC_neg[0])
        FC[0].append([zero])
        FC[0].append(FC_n[0])
        FC[0] = [x for x in chain(*FC[0])]

        for i in range(1, n - 1):
            FC[1].append(FC_neg[i])
            FC[1].append(FC_n[i])
        FC[1] = [x for x in chain(*FC[1])]

        FC[2] = FC_nn

        """Returned are two 3-dimensional lists. First inner list contains
frequencies and FC-factors of vibrations exited with |1| quanta and
the 0-0 transition.
        Second list contains frequencies and FC-factors from higher
quanta exitations. Third list are combinations of two normal modes
(including combinations of higher quanta exitations). """
        return FC, frequencies