1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
|
# -*- coding: utf-8 -*-
"""Resonant Raman intensities"""
from __future__ import print_function, division
import pickle
import os
import sys
import numpy as np
import ase.units as units
from ase.parallel import rank, parprint, paropen
from ase.vibrations import Vibrations
from ase.vibrations.franck_condon import FranckCondonOverlap
from ase.utils.timing import Timer
from ase.utils import convert_string_to_fd
class ResonantRaman(Vibrations):
"""Class for calculating vibrational modes and
resonant Raman intensities using finite difference.
atoms:
Atoms object
Excitations:
Class to calculate the excitations. The class object is
initialized as::
Excitations(atoms.get_calculator())
or by reading form a file as::
Excitations('filename', **exkwargs)
The file is written by calling the method
Excitations.write('filename').
Excitations should work like a list of ex obejects, where:
ex.get_dipole_me(form='v'):
gives the dipole matrix element in |e| * Angstrom
ex.energy:
is the transition energy in Hartrees
"""
def __init__(self, atoms, Excitations,
indices=None,
gsname='rraman', # name for ground state calculations
exname=None, # name for excited state calculations
delta=0.01,
nfree=2,
directions=None,
approximation='Profeta',
observation={'geometry': '-Z(XX)Z'},
exkwargs={}, # kwargs to be passed to Excitations
exext='.ex.gz', # extension for Excitation names
txt='-',
verbose=False,):
assert(nfree == 2)
Vibrations.__init__(self, atoms, indices, gsname, delta, nfree)
self.name = gsname + '-d%.3f' % delta
if exname is None:
exname = gsname
self.exname = exname + '-d%.3f' % delta
self.exext = exext
if directions is None:
self.directions = np.array([0, 1, 2])
else:
self.directions = np.array(directions)
self.approximation = approximation
self.observation = observation
self.exobj = Excitations
self.exkwargs = exkwargs
self.timer = Timer()
self.txt = convert_string_to_fd(txt)
self.verbose = verbose
@staticmethod
def m2(z):
return (z * z.conj()).real
def log(self, message, pre='# ', end='\n'):
if self.verbose:
self.txt.write(pre + message + end)
self.txt.flush()
def calculate(self, filename, fd):
"""Call ground and excited state calculation"""
self.timer.start('Ground state')
forces = self.atoms.get_forces()
if rank == 0:
pickle.dump(forces, fd)
fd.close()
self.timer.stop('Ground state')
self.timer.start('Excitations')
basename, _ = os.path.splitext(filename)
excitations = self.exobj(
self.atoms.get_calculator(), **self.exkwargs)
excitations.write(basename + self.exext)
self.timer.stop('Excitations')
def read_excitations(self):
self.timer.start('read excitations')
self.timer.start('really read')
self.log('reading ' + self.exname + '.eq' + self.exext)
ex0_object = self.exobj(self.exname + '.eq' + self.exext,
**self.exkwargs)
self.timer.stop('really read')
self.timer.start('index')
matching = frozenset(ex0_object)
self.timer.stop('index')
def append(lst, exname, matching):
self.timer.start('really read')
self.log('reading ' + exname, end=' ')
exo = self.exobj(exname, **self.exkwargs)
lst.append(exo)
self.timer.stop('really read')
self.timer.start('index')
matching = matching.intersection(exo)
self.log('len={0}, matching={1}'.format(len(exo),
len(matching)), pre='')
self.timer.stop('index')
return matching
exm_object_list = []
exp_object_list = []
for a in self.indices:
for i in 'xyz':
name = '%s.%d%s' % (self.exname, a, i)
matching = append(exm_object_list,
name + '-' + self.exext, matching)
matching = append(exp_object_list,
name + '+' + self.exext, matching)
self.ndof = 3 * len(self.indices)
self.nex = len(matching)
self.timer.stop('read excitations')
self.timer.start('select')
def select(exl, matching):
mlst = [ex for ex in exl if ex in matching]
assert(len(mlst) == len(matching))
return mlst
ex0 = select(ex0_object, matching)
exm = []
exp = []
r = 0
for a in self.indices:
for i in 'xyz':
exm.append(select(exm_object_list[r], matching))
exp.append(select(exp_object_list[r], matching))
r += 1
self.timer.stop('select')
self.timer.start('me and energy')
eu = units.Hartree
self.ex0E_p = np.array([ex.energy * eu for ex in ex0])
self.ex0m_pc = np.array(
[ex.get_dipole_me(form='v') for ex in ex0])
exmE_rp = []
expE_rp = []
exF_rp = []
exmm_rpc = []
expm_rpc = []
r = 0
for a in self.indices:
for i in 'xyz':
exmE_rp.append([em.energy for em in exm[r]])
expE_rp.append([ep.energy for ep in exp[r]])
exF_rp.append(
[(ep.energy - em.energy)
for ep, em in zip(exp[r], exm[r])])
exmm_rpc.append(
[ex.get_dipole_me(form='v') for ex in exm[r]])
expm_rpc.append(
[ex.get_dipole_me(form='v') for ex in exp[r]])
r += 1
self.exmE_rp = np.array(exmE_rp) * eu
self.expE_rp = np.array(expE_rp) * eu
self.exF_rp = np.array(exF_rp) * eu / 2 / self.delta
self.exmm_rpc = np.array(exmm_rpc)
self.expm_rpc = np.array(expm_rpc)
self.timer.stop('me and energy')
def read(self, method='standard', direction='central'):
"""Read data from a pre-performed calculation."""
if not hasattr(self, 'modes'):
self.timer.start('read vibrations')
Vibrations.read(self, method, direction)
# we now have:
# self.H : Hessian matrix
# self.im : 1./sqrt(masses)
# self.modes : Eigenmodes of the mass weighted H
self.om_r = self.hnu.real # energies in eV
self.timer.stop('read vibrations')
if not hasattr(self, 'ex0E_p'):
self.read_excitations()
def get_Huang_Rhys_factors(self, forces_r):
"""Evaluate Huang-Rhys factors derived from forces."""
self.timer.start('Huang-Rhys')
assert(len(forces_r.flat) == self.ndof)
# solve the matrix equation for the equilibrium displacements
# XXX why are the forces mass weighted ???
X_r = np.linalg.solve(self.im[:, None] * self.H * self.im,
forces_r.flat * self.im)
d_r = np.dot(self.modes, X_r)
# Huang-Rhys factors S
s = 1.e-20 / units.kg / units.C / units._hbar**2 # SI units
self.timer.stop('Huang-Rhys')
return s * d_r**2 * self.om_r / 2.
def get_matrix_element_AlbrechtA(self, omega, gamma=0.1, ml=range(16)):
"""Evaluate Albrecht A term.
Unit: |e|^2Angstrom^2/eV
"""
self.read()
self.timer.start('AlbrechtA')
if not hasattr(self, 'fco'):
self.fco = FranckCondonOverlap()
# excited state forces
F_pr = self.exF_rp.T
m_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
for p, energy in enumerate(self.ex0E_p):
S_r = self.get_Huang_Rhys_factors(F_pr[p])
me_cc = np.outer(self.ex0m_pc[p], self.ex0m_pc[p].conj())
for m in ml:
self.timer.start('0mm1')
fco_r = self.fco.direct0mm1(m, S_r)
self.timer.stop('0mm1')
self.timer.start('einsum')
m_rcc += np.einsum('a,bc->abc',
fco_r / (energy + m * self.om_r - omega -
1j * gamma),
me_cc)
m_rcc += np.einsum('a,bc->abc',
fco_r / (energy + (m - 1) * self.om_r +
omega + 1j * gamma),
me_cc)
self.timer.stop('einsum')
self.timer.stop('AlbrechtA')
return m_rcc
def get_matrix_element_AlbrechtBC(self, omega, gamma=0.1, ml=[1],
term='BC'):
"""Evaluate Albrecht B and/or C term(s)."""
self.read()
self.timer.start('AlbrechtBC')
if not hasattr(self, 'fco'):
self.fco = FranckCondonOverlap()
# excited state forces
F_pr = self.exF_rp.T
m_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
for p, energy in enumerate(self.ex0E_p):
S_r = self.get_Huang_Rhys_factors(F_pr[p])
for m in ml:
self.timer.start('Franck-Condon overlaps')
fc1mm1_r = self.fco.direct(1, m, S_r)
fc0mm02_r = self.fco.direct(0, m, S_r)
fc0mm02_r += np.sqrt(2) * self.fco.direct0mm2(m, S_r)
# XXXXX
fc1mm1_r[-1] = 1
fc0mm02_r[-1] = 1
print(m, fc1mm1_r[-1], fc0mm02_r[-1])
self.timer.stop('Franck-Condon overlaps')
self.timer.start('me dervivatives')
dm_rc = []
r = 0
for a in self.indices:
for i in 'xyz':
dm_rc.append(
(self.expm_rpc[r, p] - self.exmm_rpc[r, p]) *
self.im[r])
print('pm=', self.expm_rpc[r, p], self.exmm_rpc[r, p])
r += 1
dm_rc = np.array(dm_rc) / (2 * self.delta)
self.timer.stop('me dervivatives')
self.timer.start('map to modes')
# print('dm_rc[2], dm_rc[5]', dm_rc[2], dm_rc[5])
print('dm_rc=', dm_rc)
dm_rc = np.dot(dm_rc.T, self.modes.T).T
print('dm_rc[-1][2]', dm_rc[-1][2])
self.timer.stop('map to modes')
self.timer.start('multiply')
# me_cc = np.outer(self.ex0m_pc[p], self.ex0m_pc[p].conj())
for r in range(self.ndof):
if 'B' in term:
# XXXX
denom = (1. /
(energy + m * 0 * self.om_r[r] -
omega - 1j * gamma))
# ok print('denom=', denom)
m_rcc[r] += (np.outer(dm_rc[r],
self.ex0m_pc[p].conj()) *
fc1mm1_r[r] * denom)
if r == 5:
print('m_rcc[r]=', m_rcc[r][2, 2])
m_rcc[r] += (np.outer(self.ex0m_pc[p],
dm_rc[r].conj()) *
fc0mm02_r[r] * denom)
if 'C' in term:
denom = (1. /
(energy + (m - 1) * self.om_r[r] +
omega + 1j * gamma))
m_rcc[r] += (np.outer(self.ex0m_pc[p],
dm_rc[r].conj()) *
fc1mm1_r[r] * denom)
m_rcc[r] += (np.outer(dm_rc[r],
self.ex0m_pc[p].conj()) *
fc0mm02_r[r] * denom)
self.timer.stop('multiply')
print('m_rcc[-1]=', m_rcc[-1][2, 2])
self.timer.start('pre_r')
with np.errstate(divide='ignore'):
pre_r = np.where(self.om_r > 0,
np.sqrt(units._hbar**2 / 2. / self.om_r), 0)
# print('BC: pre_r=', pre_r)
for r, p in enumerate(pre_r):
m_rcc[r] *= p
self.timer.stop('pre_r')
self.timer.stop('AlbrechtBC')
return m_rcc
def get_matrix_element_Profeta(self, omega, gamma=0.1,
energy_derivative=False):
"""Evaluate Albrecht B+C term in Profeta and Mauri approximation"""
self.read()
self.timer.start('amplitudes')
self.timer.start('init')
V_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
pre = 1. / (2 * self.delta)
self.timer.stop('init')
def kappa(me_pc, e_p, omega, gamma, form='v'):
"""Kappa tensor after Profeta and Mauri
PRB 63 (2001) 245415"""
me_ccp = np.empty((3, 3, len(e_p)), dtype=complex)
for p, me_c in enumerate(me_pc):
me_ccp[:, :, p] = np.outer(me_pc[p], me_pc[p].conj())
# print('kappa: me_ccp=', me_ccp[2,2,0])
# ok print('kappa: den=', 1./(e_p - omega - 1j * gamma))
kappa_ccp = (me_ccp / (e_p - omega - 1j * gamma) +
me_ccp.conj() / (e_p + omega + 1j * gamma))
return kappa_ccp.sum(2)
self.timer.start('kappa')
r = 0
for a in self.indices:
for i in 'xyz':
if not energy_derivative < 0:
V_rcc[r] = pre * self.im[r] * (
kappa(self.expm_rpc[r], self.ex0E_p, omega, gamma) -
kappa(self.exmm_rpc[r], self.ex0E_p, omega, gamma))
if energy_derivative:
V_rcc[r] += pre * self.im[r] * (
kappa(self.ex0m_pc, self.expE_rp[r], omega, gamma) -
kappa(self.ex0m_pc, self.exmE_rp[r], omega, gamma))
r += 1
self.timer.stop('kappa')
# print('V_rcc[2], V_rcc[5]=', V_rcc[2,2,2], V_rcc[5,2,2])
self.timer.stop('amplitudes')
# map to modes
self.timer.start('pre_r')
with np.errstate(divide='ignore'):
pre_r = np.where(self.om_r > 0,
np.sqrt(units._hbar**2 / 2. / self.om_r), 0)
V_rcc = np.dot(V_rcc.T, self.modes.T).T
# looks ok print('self.modes.T[-1]',self.modes.T)
# looks ok print('V_rcc[-1]=', V_rcc[-1][2,2])
# ok print('Profeta: pre_r=', pre_r)
for r, p in enumerate(pre_r):
V_rcc[r] *= p
self.timer.stop('pre_r')
return V_rcc
def get_matrix_element(self, omega, gamma):
self.read()
V_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
if self.approximation.lower() == 'profeta':
V_rcc += self.get_matrix_element_Profeta(omega, gamma)
elif self.approximation.lower() == 'placzek':
V_rcc += self.get_matrix_element_Profeta(omega, gamma, True)
elif self.approximation.lower() == 'p-p':
V_rcc += self.get_matrix_element_Profeta(omega, gamma, -1)
elif self.approximation.lower() == 'albrecht a':
V_rcc += self.get_matrix_element_AlbrechtA(omega, gamma)
elif self.approximation.lower() == 'albrecht b':
raise NotImplementedError('not working')
V_rcc += self.get_matrix_element_AlbrechtBC(omega, gamma, term='B')
elif self.approximation.lower() == 'albrecht c':
raise NotImplementedError('not working')
V_rcc += self.get_matrix_element_AlbrechtBC(omega, gamma, term='C')
elif self.approximation.lower() == 'albrecht bc':
raise NotImplementedError('not working')
V_rcc += self.get_matrix_element_AlbrechtBC(omega, gamma)
elif self.approximation.lower() == 'albrecht':
raise NotImplementedError('not working')
V_rcc += self.get_matrix_element_AlbrechtA(omega, gamma)
V_rcc += self.get_matrix_element_AlbrechtBC(omega, gamma)
elif self.approximation.lower() == 'albrecht+profeta':
V_rcc += self.get_matrix_element_AlbrechtA(omega, gamma)
V_rcc += self.get_matrix_element_Profeta(omega, gamma)
else:
raise NotImplementedError(
'Approximation {0} not implemented. '.format(
self.approximation) +
'Please use "Profeta", "Albrecht A/B/C/BC", ' +
'or "Albrecht".')
return V_rcc
def get_intensities(self, omega, gamma=0.1):
m2 = ResonantRaman.m2
alpha_rcc = self.get_matrix_element(omega, gamma)
if not self.observation: # XXXX remove
"""Simple sum, maybe too simple"""
return m2(alpha_rcc).sum(axis=1).sum(axis=1)
# XXX enable when appropraiate
# if self.observation['orientation'].lower() != 'random':
# raise NotImplementedError('not yet')
# random orientation of the molecular frame
# Woodward & Long,
# Guthmuller, J. J. Chem. Phys. 2016, 144 (6), 64106
m2 = ResonantRaman.m2
alpha2_r = m2(alpha_rcc[:, 0, 0] + alpha_rcc[:, 1, 1] +
alpha_rcc[:, 2, 2]) / 9.
delta2_r = 3 / 4. * (
m2(alpha_rcc[:, 0, 1] - alpha_rcc[:, 1, 0]) +
m2(alpha_rcc[:, 0, 2] - alpha_rcc[:, 2, 0]) +
m2(alpha_rcc[:, 1, 2] - alpha_rcc[:, 2, 1]))
gamma2_r = (3 / 4. * (m2(alpha_rcc[:, 0, 1] + alpha_rcc[:, 1, 0]) +
m2(alpha_rcc[:, 0, 2] + alpha_rcc[:, 2, 0]) +
m2(alpha_rcc[:, 1, 2] + alpha_rcc[:, 2, 1])) +
(m2(alpha_rcc[:, 0, 0] - alpha_rcc[:, 1, 1]) +
m2(alpha_rcc[:, 0, 0] - alpha_rcc[:, 2, 2]) +
m2(alpha_rcc[:, 1, 1] - alpha_rcc[:, 2, 2])) / 2)
if self.observation['geometry'] == '-Z(XX)Z': # Porto's notation
return (45 * alpha2_r + 5 * delta2_r + 4 * gamma2_r) / 45.
elif self.observation['geometry'] == '-Z(XY)Z': # Porto's notation
return gamma2_r / 15.
elif self.observation['scattered'] == 'Z':
# scattered light in direction of incoming light
return (45 * alpha2_r + 5 * delta2_r + 7 * gamma2_r) / 45.
elif self.observation['scattered'] == 'parallel':
# scattered light perendicular and
# polarization in plane
return 6 * gamma2_r / 45.
elif self.observation['scattered'] == 'perpendicular':
# scattered light perendicular and
# polarization out of plane
return (45 * alpha2_r + 5 * delta2_r + 7 * gamma2_r) / 45.
else:
raise NotImplementedError
def get_cross_sections(self, omega, gamma=0.1):
I_r = self.get_intensities(omega, gamma)
pre = 1. / 16 / np.pi**2 / units.eps0**2 / units.c**4
# frequency of scattered light
omS_r = omega - self.hnu
return pre * omega * omS_r**3 * I_r
def get_spectrum(self, omega, gamma=0.1,
start=200.0, end=4000.0, npts=None, width=4.0,
type='Gaussian', method='standard', direction='central',
intensity_unit='????', normalize=False):
"""Get resonant Raman spectrum.
The method returns wavenumbers in cm^-1 with corresponding
Raman cross section.
Start and end point, and width of the Gaussian/Lorentzian should
be given in cm^-1.
"""
self.type = type.lower()
assert self.type in ['gaussian', 'lorentzian']
if not npts:
npts = int((end - start) / width * 10 + 1)
frequencies = self.get_frequencies(method, direction).real
intensities = self.get_cross_sections(omega, gamma)
prefactor = 1
if type == 'lorentzian':
intensities = intensities * width * np.pi / 2.
if normalize:
prefactor = 2. / width / np.pi
else:
sigma = width / 2. / np.sqrt(2. * np.log(2.))
if normalize:
prefactor = 1. / sigma / np.sqrt(2 * np.pi)
# Make array with spectrum data
spectrum = np.empty(npts)
energies = np.linspace(start, end, npts)
for i, energy in enumerate(energies):
energies[i] = energy
if type == 'lorentzian':
spectrum[i] = (intensities * 0.5 * width / np.pi /
((frequencies - energy)**2 +
0.25 * width**2)).sum()
else:
spectrum[i] = (intensities *
np.exp(-(frequencies - energy)**2 /
2. / sigma**2)).sum()
return [energies, prefactor * spectrum]
def write_spectrum(self, omega, gamma,
out='resonant-raman-spectra.dat',
start=200, end=4000,
npts=None, width=10,
type='Gaussian', method='standard',
direction='central'):
"""Write out spectrum to file.
First column is the wavenumber in cm^-1, the second column the
absolute infrared intensities, and
the third column the absorbance scaled so that data runs
from 1 to 0. Start and end
point, and width of the Gaussian/Lorentzian should be given
in cm^-1."""
energies, spectrum = self.get_spectrum(omega, gamma,
start, end, npts, width,
type, method, direction)
# Write out spectrum in file. First column is absolute intensities.
outdata = np.empty([len(energies), 3])
outdata.T[0] = energies
outdata.T[1] = spectrum
fd = open(out, 'w')
fd.write('# Resonant Raman spectrum\n')
fd.write('# omega={0:g} eV, gamma={1:g} eV\n'.format(omega, gamma))
fd.write('# %s folded, width=%g cm^-1\n' % (type.title(), width))
fd.write('# [cm^-1] [a.u.]\n')
for row in outdata:
fd.write('%.3f %15.5g\n' %
(row[0], row[1]))
fd.close()
def summary(self, omega, gamma=0.1,
method='standard', direction='central',
log=sys.stdout):
"""Print summary for given omega [eV]"""
hnu = self.get_energies(method, direction)
s = 0.01 * units._e / units._c / units._hplanck
intensities = self.get_intensities(omega, gamma)
if isinstance(log, str):
log = paropen(log, 'a')
parprint('-------------------------------------', file=log)
parprint(' excitation at ' + str(omega) + ' eV', file=log)
parprint(' gamma ' + str(gamma) + ' eV', file=log)
parprint(' approximation:', self.approximation, file=log)
parprint(' observation:', self.observation, '\n', file=log)
parprint(' Mode Frequency Intensity', file=log)
parprint(' # meV cm^-1 [e^4A^4/eV^2]', file=log)
parprint('-------------------------------------', file=log)
for n, e in enumerate(hnu):
if e.imag != 0:
c = 'i'
e = e.imag
else:
c = ' '
e = e.real
parprint('%3d %6.1f%s %7.1f%s %9.3g' %
(n, 1000 * e, c, s * e, c, intensities[n]),
file=log)
parprint('-------------------------------------', file=log)
parprint('Zero-point energy: %.3f eV' % self.get_zero_point_energy(),
file=log)
def __del__(self):
self.timer.write(self.txt)
class LrResonantRaman(ResonantRaman):
"""Resonant Raman for linear response
Quick and dirty approach to enable loading of LrTDDFT calculations
"""
def read_excitations(self):
self.timer.start('read excitations')
self.timer.start('really read')
self.log('reading ' + self.exname + '.eq' + self.exext)
ex0_object = self.exobj(self.exname + '.eq' + self.exext,
**self.exkwargs)
self.timer.stop('really read')
self.timer.start('index')
matching = frozenset(ex0_object.kss)
self.timer.stop('index')
def append(lst, exname, matching):
self.timer.start('really read')
self.log('reading ' + exname, end=' ')
exo = self.exobj(exname, **self.exkwargs)
lst.append(exo)
self.timer.stop('really read')
self.timer.start('index')
matching = matching.intersection(exo.kss)
self.log('len={0}, matching={1}'.format(len(exo.kss),
len(matching)), pre='')
self.timer.stop('index')
return matching
exm_object_list = []
exp_object_list = []
for a in self.indices:
for i in 'xyz':
name = '%s.%d%s' % (self.exname, a, i)
matching = append(exm_object_list,
name + '-' + self.exext, matching)
matching = append(exp_object_list,
name + '+' + self.exext, matching)
self.ndof = 3 * len(self.indices)
self.timer.stop('read excitations')
self.timer.start('select')
def select(exl, matching):
exl.diagonalize(**self.exkwargs)
mlst = [ex for ex in exl]
# mlst = [ex for ex in exl if ex in matching]
# assert(len(mlst) == len(matching))
return mlst
ex0 = select(ex0_object, matching)
self.nex = len(ex0)
exm = []
exp = []
r = 0
for a in self.indices:
for i in 'xyz':
exm.append(select(exm_object_list[r], matching))
exp.append(select(exp_object_list[r], matching))
r += 1
self.timer.stop('select')
self.timer.start('me and energy')
eu = units.Hartree
self.ex0E_p = np.array([ex.energy * eu for ex in ex0])
# self.exmE_p = np.array([ex.energy * eu for ex in exm])
# self.expE_p = np.array([ex.energy * eu for ex in exp])
self.ex0m_pc = np.array(
[ex.get_dipole_me(form='v') for ex in ex0])
self.exF_rp = []
exmE_rp = []
expE_rp = []
exmm_rpc = []
expm_rpc = []
r = 0
for a in self.indices:
for i in 'xyz':
exmE_rp.append([em.energy for em in exm[r]])
expE_rp.append([ep.energy for ep in exp[r]])
self.exF_rp.append(
[(ep.energy - em.energy)
for ep, em in zip(exp[r], exm[r])])
exmm_rpc.append(
[ex.get_dipole_me(form='v') for ex in exm[r]])
expm_rpc.append(
[ex.get_dipole_me(form='v') for ex in exp[r]])
r += 1
self.exmE_rp = np.array(exmE_rp) * eu
self.expE_rp = np.array(expE_rp) * eu
self.exF_rp = np.array(self.exF_rp) * eu / 2 / self.delta
self.exmm_rpc = np.array(exmm_rpc)
self.expm_rpc = np.array(expm_rpc)
self.timer.stop('me and energy')
|