File: mlab.py

package info (click to toggle)
python-ase 3.12.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,192 kB
  • ctags: 8,112
  • sloc: python: 93,375; sh: 99; makefile: 94
file content (130 lines) | stat: -rw-r--r-- 4,214 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from __future__ import print_function
import optparse

import numpy as np

from ase.data import covalent_radii
from ase.io.cube import read_cube_data
from ase.data.colors import cpk_colors
from ase.calculators.calculator import get_calculator


def plot(atoms, data, contours):
    """Plot atoms, unit-cell and iso-surfaces using Mayavi.
    
    Parameters:
        
    atoms: Atoms object
        Positions, atomiz numbers and unit-cell.
    data: 3-d ndarray of float
        Data for iso-surfaces.
    countours: list of float
        Contour values.
    """
    
    # Delay slow imports:
    from mayavi import mlab

    mlab.figure(1, bgcolor=(1, 1, 1))  # make a white figure

    # Plot the atoms as spheres:
    for pos, Z in zip(atoms.positions, atoms.numbers):
        mlab.points3d(*pos,
                      scale_factor=covalent_radii[Z],
                      resolution=20,
                      color=tuple(cpk_colors[Z]))

    # Draw the unit cell:
    A = atoms.cell
    for i1, a in enumerate(A):
        i2 = (i1 + 1) % 3
        i3 = (i1 + 2) % 3
        for b in [np.zeros(3), A[i2]]:
            for c in [np.zeros(3), A[i3]]:
                p1 = b + c
                p2 = p1 + a
                mlab.plot3d([p1[0], p2[0]],
                            [p1[1], p2[1]],
                            [p1[2], p2[2]],
                            tube_radius=0.1)

    cp = mlab.contour3d(data, contours=contours, transparent=True,
                        opacity=0.5, colormap='hot')
    # Do some tvtk magic in order to allow for non-orthogonal unit cells:
    polydata = cp.actor.actors[0].mapper.input
    pts = np.array(polydata.points) - 1
    # Transform the points to the unit cell:
    polydata.points = np.dot(pts, A / np.array(data.shape)[:, np.newaxis])
    
    # Apparently we need this to redraw the figure, maybe it can be done in
    # another way?
    mlab.view(azimuth=155, elevation=70, distance='auto')
    # Show the 3d plot:
    mlab.show()


description = """\
Plot iso-surfaces from a cube-file or a wave function or an electron
density from a calculator-restart file."""


def main(args=None):
    parser = optparse.OptionParser(usage='%prog [options] filename',
                                   description=description)
    add = parser.add_option
    add('-n', '--band-index', type=int, metavar='INDEX',
        help='Band index counting from zero.')
    add('-s', '--spin-index', type=int, metavar='SPIN',
        help='Spin index: zero or one.')
    add('-c', '--contours', default='4',
        help='Use "-c 3" for 3 contours or "-c -0.5,0.5" for specific ' +
        'values.  Default is four contours.')
    add('-r', '--repeat', help='Example: "-r 2,2,2".')
    add('-C', '--calculator-name', metavar='NAME', help='Name of calculator.')
    
    opts, args = parser.parse_args(args)
    if len(args) != 1:
        parser.error('Incorrect number of arguments')
        
    arg = args[0]
    if arg.endswith('.cube'):
        data, atoms = read_cube_data(arg)
    else:
        calc = get_calculator(opts.calculator_name)(arg, txt=None)
        atoms = calc.get_atoms()
        if opts.band_index is None:
            data = calc.get_pseudo_density(opts.spin_index)
        else:
            data = calc.get_pseudo_wave_function(opts.band_index,
                                                 opts.spin_index or 0)
            if data.dtype == complex:
                data = abs(data)
                
    mn = data.min()
    mx = data.max()
    print('Min: %16.6f' % mn)
    print('Max: %16.6f' % mx)
    
    if opts.contours.isdigit():
        n = int(opts.contours)
        d = (mx - mn) / n
        contours = np.linspace(mn + d / 2, mx - d / 2, n).tolist()
    else:
        contours = [float(x) for x in opts.contours.split(',')]
        
    if len(contours) == 1:
        print('1 contour:', contours[0])
    else:
        print('%d contours: %.6f, ..., %.6f' %
              (len(contours), contours[0], contours[-1]))

    if opts.repeat:
        repeat = [int(r) for r in opts.repeat.split(',')]
        data = np.tile(data, repeat)
        atoms *= repeat
        
    plot(atoms, data, contours)
    

if __name__ == '__main__':
    main()