1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
from __future__ import division
from ase.utils.structure_comparator import SymmetryEquivalenceCheck
from ase.utils.structure_comparator import SpgLibNotFoundError
from ase.build import bulk
from ase import Atoms
from ase.spacegroup import spacegroup, crystal
from random import randint
import numpy as np
heavy_test = False
def get_atoms_with_mixed_elements(crystalstructure="fcc"):
atoms = bulk("Al", crystalstructure=crystalstructure, a=3.2)
atoms = atoms * (2, 2, 2)
symbs = ["Al", "Cu", "Zn"]
symbols = [symbs[randint(0, len(symbs) - 1)] for _ in range(len(atoms))]
for i in range(len(atoms)):
atoms[i].symbol = symbols[i]
return atoms
def test_compare(comparator):
s1 = bulk("Al")
s1 = s1 * (2, 2, 2)
s2 = bulk("Al")
s2 = s2 * (2, 2, 2)
assert comparator.compare(s1, s2)
def test_fcc_bcc(comparator):
s1 = bulk("Al", crystalstructure="fcc")
s2 = bulk("Al", crystalstructure="bcc", a=4.05)
s1 = s1 * (2, 2, 2)
s2 = s2 * (2, 2, 2)
assert not comparator.compare(s1, s2)
def test_single_impurity(comparator):
s1 = bulk("Al")
s1 = s1 * (2, 2, 2)
s1[0].symbol = "Mg"
s2 = bulk("Al")
s2 = s2 * (2, 2, 2)
s2[3].symbol = "Mg"
assert comparator.compare(s1, s2)
def test_translations(comparator):
s1 = get_atoms_with_mixed_elements()
s2 = s1.copy()
xmax = 2.0 * np.max(s1.get_cell().T)
N = 3
dx = xmax / N
pos_ref = s2.get_positions()
structures = []
for i in range(N):
for j in range(N):
for k in range(N):
displacement = np.array([dx * i, dx * j, dx * k])
new_pos = pos_ref + displacement
s2.set_positions(new_pos)
structures.append(s2)
assert comparator.compare(s1, structures)
def test_rot_60_deg(comparator):
s1 = get_atoms_with_mixed_elements()
s2 = s1.copy()
ca = np.cos(np.pi / 3.0)
sa = np.sin(np.pi / 3.0)
matrix = np.array([[ca, sa, 0.0], [-sa, ca, 0.0], [0.0, 0.0, 1.0]])
s2.set_positions(matrix.dot(s2.get_positions().T).T)
s2.set_cell(matrix.dot(s2.get_cell().T).T)
assert comparator.compare(s1, s2)
def test_rot_120_deg(comparator):
s1 = get_atoms_with_mixed_elements()
s2 = s1.copy()
ca = np.cos(2.0 * np.pi / 3.0)
sa = np.sin(2.0 * np.pi / 3.0)
matrix = np.array([[ca, sa, 0.0], [-sa, ca, 0.0], [0.0, 0.0, 1.0]])
s2.set_positions(matrix.dot(s2.get_positions().T).T)
s2.set_cell(matrix.dot(s2.get_cell().T).T)
assert comparator.compare(s1, s2)
def test_rotations_to_standard(comparator):
s1 = Atoms("Al")
tol = 1E-6
num_tests = 4
if heavy_test:
num_tests = 20
for _ in range(num_tests):
cell = np.random.rand(3, 3) * 4.0 - 4.0
s1.set_cell(cell)
new_cell = comparator._standarize_cell(s1).get_cell().T
assert abs(new_cell[1, 0]) < tol
assert abs(new_cell[2, 0]) < tol
assert abs(new_cell[2, 1]) < tol
def test_point_inversion(comparator):
s1 = get_atoms_with_mixed_elements()
s2 = s1.copy()
s2.set_positions(-s2.get_positions())
assert comparator.compare(s1, s2)
def test_mirror_plane(comparator):
s1 = get_atoms_with_mixed_elements(crystalstructure="hcp")
s2 = s1.copy()
mat = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]])
s2.set_positions(mat.dot(s2.get_positions().T).T)
assert comparator.compare(s1, s2)
mat = np.array([[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
s2.set_positions(mat.dot(s1.get_positions().T).T)
assert comparator.compare(s1, s2)
mat = np.array([[1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0]])
s2.set_positions(mat.dot(s1.get_positions().T).T)
assert comparator.compare(s1, s2)
def test_hcp_symmetry_ops(comparator):
s1 = get_atoms_with_mixed_elements(crystalstructure="hcp")
s2 = s1.copy()
sg = spacegroup.Spacegroup(194)
cell = s2.get_cell().T
inv_cell = np.linalg.inv(cell)
operations = sg.get_rotations()
if not heavy_test:
operations = operations[::int(np.ceil(len(operations) / 4))]
for op in operations:
s1 = get_atoms_with_mixed_elements(crystalstructure="hcp")
s2 = s1.copy()
transformed_op = cell.dot(op).dot(inv_cell)
s2.set_positions(transformed_op.dot(s1.get_positions().T).T)
assert comparator.compare(s1, s2)
def test_fcc_symmetry_ops(comparator):
s1 = get_atoms_with_mixed_elements()
s2 = s1.copy()
sg = spacegroup.Spacegroup(225)
cell = s2.get_cell().T
inv_cell = np.linalg.inv(cell)
operations = sg.get_rotations()
if not heavy_test:
operations = operations[::int(np.ceil(len(operations) / 4))]
for op in operations:
s1 = get_atoms_with_mixed_elements()
s2 = s1.copy()
transformed_op = cell.dot(op).dot(inv_cell)
s2.set_positions(transformed_op.dot(s1.get_positions().T).T)
assert comparator.compare(s1, s2)
def test_bcc_symmetry_ops(comparator):
s1 = get_atoms_with_mixed_elements(crystalstructure="bcc")
s2 = s1.copy()
sg = spacegroup.Spacegroup(229)
cell = s2.get_cell().T
inv_cell = np.linalg.inv(cell)
operations = sg.get_rotations()
if not heavy_test:
operations = operations[::int(np.ceil(len(operations) / 4))]
for op in operations:
s1 = get_atoms_with_mixed_elements(crystalstructure="bcc")
s2 = s1.copy()
transformed_op = cell.dot(op).dot(inv_cell)
s2.set_positions(transformed_op.dot(s1.get_positions().T).T)
assert comparator.compare(s1, s2)
def test_bcc_translation(comparator):
s1 = get_atoms_with_mixed_elements(crystalstructure="bcc")
s2 = s1.copy()
s2.set_positions(s2.get_positions() + np.array([6.0, -2.0, 1.0]))
assert comparator.compare(s1, s2)
def test_one_atom_out_of_pos(comparator):
s1 = get_atoms_with_mixed_elements()
s2 = s1.copy()
pos = s1.get_positions()
pos[0, :] += 0.2
s2.set_positions(pos)
assert not comparator.compare(s1, s2)
def test_reduce_to_primitive(comparator):
atoms1 = crystal(symbols=['V', 'Li', 'O'],
basis=[(0.000000, 0.000000, 0.000000),
(0.333333, 0.666667, 0.000000),
(0.333333, 0.000000, 0.250000)],
spacegroup=167,
cellpar=[5.123, 5.123, 13.005, 90., 90., 120.],
size=[1, 1, 1], primitive_cell=False)
atoms2 = crystal(symbols=['V', 'Li', 'O'],
basis=[(0.000000, 0.000000, 0.000000),
(0.333333, 0.666667, 0.000000),
(0.333333, 0.000000, 0.250000)],
spacegroup=167,
cellpar=[5.123, 5.123, 13.005, 90., 90., 120.],
size=[1, 1, 1], primitive_cell=True)
try:
# Tell the comparator to reduce to primitive cell
comparator.to_primitive = True
assert comparator.compare(atoms1, atoms2)
except SpgLibNotFoundError:
pass
# Reset the comparator to its original state
comparator.to_primitive = False
def test_order_of_candidates(comparator):
s1 = bulk("Al", crystalstructure='fcc', a=3.2)
s1 = s1 * (2, 2, 2)
s2 = s1.copy()
s1.positions[0, :] += .2
assert comparator.compare(s2, s1) == comparator.compare(s1, s2)
def test_original_paper_structures():
# Structures from the original paper:
# Comput. Phys. Commun. 183, 690-697 (2012)
# They should evaluate equal (within a certain tolerance)
syms = ['O', 'O', 'Mg', 'F']
cell1 = [(3.16, 0.00, 0.00), (-0.95, 4.14, 0.00), (-0.95, -0.22, 4.13)]
p1 = [(0.44, 0.40, 0.30), (0.94, 0.40, 0.79),
(0.45, 0.90, 0.79), (0.94, 0.40, 0.29)]
s1 = Atoms(syms, cell=cell1, scaled_positions=p1, pbc=True)
cell2 = [(6.00, 0.00, 0.00), (1.00, 3.00, 0.00), (2.00, -3.00, 3.00)]
p2 = [(0.00, 0.00, 0.00), (0.00, 0.00, 0.50),
(0.50, 0.00, 0.00), (0.00, 0.50, 0.00)]
s2 = Atoms(syms, cell=cell2, scaled_positions=p2, pbc=True)
comp = SymmetryEquivalenceCheck()
assert comp.compare(s1, s2)
assert comp.compare(s2, s1) == comp.compare(s1, s2)
def test_symmetrical_one_element_out(comparator):
s1 = get_atoms_with_mixed_elements()
s1.set_chemical_symbols(['Zn', 'Zn', 'Al', 'Zn', 'Zn', 'Al', 'Zn', 'Zn'])
s2 = s1.copy()
s2.positions[0, :] += 0.2
assert not comparator.compare(s1, s2)
assert not comparator.compare(s2, s1)
def test_one_vs_many():
s1 = Atoms('H3', positions=[[0.5, 0.5, 0], [0.5, 1.5, 0], [1.5, 1.5, 0]],
cell=[2, 2, 2], pbc=True)
# Get the unit used for position comparison
u = (s1.get_volume() / len(s1))**(1 / 3)
comp = SymmetryEquivalenceCheck(stol=.095 / u, scale_volume=True)
s2 = s1.copy()
assert comp.compare(s1, s2)
s2_list = []
s3 = Atoms('H3', positions=[[0.5, 0.5, 0], [0.5, 1.5, 0], [1.5, 1.5, 0]],
cell=[3, 3, 3], pbc=True)
s2_list.append(s3)
for d in np.linspace(0.1, 1.0, 5):
s2 = s1.copy()
s2.positions[0] += [d, 0, 0]
s2_list.append(s2)
assert not comp.compare(s1, s2_list[:-1])
assert comp.compare(s1, s2_list)
def run_all_tests(comparator):
test_compare(comparator)
test_fcc_bcc(comparator)
test_single_impurity(comparator)
test_translations(comparator)
test_rot_60_deg(comparator)
test_rot_120_deg(comparator)
test_rotations_to_standard(comparator)
test_point_inversion(comparator)
test_mirror_plane(comparator)
test_hcp_symmetry_ops(comparator)
test_fcc_symmetry_ops(comparator)
test_bcc_symmetry_ops(comparator)
test_bcc_translation(comparator)
test_one_atom_out_of_pos(comparator)
test_reduce_to_primitive(comparator)
test_order_of_candidates(comparator)
test_one_vs_many()
test_original_paper_structures()
comparator = SymmetryEquivalenceCheck()
run_all_tests(comparator)
|