1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
from typing import Tuple
import numpy as np
from ase.units import Bohr, Ha
from ase.data import covalent_radii
from ase.neighborlist import NeighborList
class LippincottStuttman:
# atomic polarizability values from:
# Lippincott and Stutman J. Phys. Chem. 68 (1964) 2926-2940
# DOI: 10.1021/j100792a033
# see also:
# Marinov and Zotov Phys. Rev. B 55 (1997) 2938-2944
# DOI: 10.1103/PhysRevB.55.2938
# unit: Angstrom^3
atomic_polarizability = {
'B': 1.358,
'C': 0.978,
'N': 0.743,
'O': 0.592,
'Al': 3.918,
'Si': 2.988,
}
# reduced electronegativity Table I
reduced_eletronegativity = {
'B': 0.538,
'C': 0.846,
'N': 0.927,
'O': 1.0,
'Al': 0.533,
'Si': 0.583,
}
def __call__(self, el1: str, el2: str,
length: float) -> Tuple[float, float]:
"""Bond polarizability
Parameters
----------
el1: element string
el2: element string
length: float
Returns
-------
alphal: float
Parallel component
alphap: float
Perpendicular component
"""
alpha1 = self.atomic_polarizability[el1]
alpha2 = self.atomic_polarizability[el2]
ren1 = self.reduced_eletronegativity[el1]
ren2 = self.reduced_eletronegativity[el2]
sigma = 1.
if el1 != el2:
sigma = np.exp(- (ren1 - ren2)**2 / 4)
# parallel component
alphal = sigma * length**4 / (4**4 * alpha1 * alpha2)**(1. / 6)
# XXX consider fractional covalency ?
# prependicular component
alphap = ((ren1**2 * alpha1 + ren2**2 * alpha2)
/ (ren1**2 + ren2**2))
# XXX consider fractional covalency ?
return alphal, alphap
class Linearized:
def __init__(self):
self._data = {
# L. Wirtz, M. Lazzeri, F. Mauri, A. Rubio,
# Phys. Rev. B 2005, 71, 241402.
# R0 al al' ap ap'
'CC': (1.53, 1.69, 7.43, 0.71, 0.37),
'BN': (1.56, 1.58, 4.22, 0.42, 0.90),
}
def __call__(self, el1: str, el2: str,
length: float) -> Tuple[float, float]:
"""Bond polarizability
Parameters
----------
el1: element string
el2: element string
length: float
Returns
-------
alphal: float
Parallel component
alphap: float
Perpendicular component
"""
if el1 > el2:
bond = el2 + el1
else:
bond = el1 + el2
assert bond in self._data
length0, al, ald, ap, apd = self._data[bond]
return al + ald * (length - length0), ap + apd * (length - length0)
class BondPolarizability:
def __init__(self, model=LippincottStuttman()):
self.model = model
def __call__(self, *args, **kwargs):
"""Shorthand for calculate"""
return self.calculate(*args, **kwargs)
def calculate(self, atoms, radiicut=1.5):
"""Sum up the bond polarizability from all bonds
Parameters
----------
atoms: Atoms object
radiicut: float
Bonds are counted up to
radiicut * (sum of covalent radii of the pairs)
Default: 1.5
Returns
-------
polarizability tensor with unit (e^2 Angstrom^2 / eV).
Multiply with Bohr * Ha to get (Angstrom^3)
"""
radii = np.array([covalent_radii[z]
for z in atoms.numbers])
nl = NeighborList(radii * 1.5, skin=0,
self_interaction=False)
nl.update(atoms)
pos_ac = atoms.get_positions()
alpha = 0
for ia, atom in enumerate(atoms):
indices, offsets = nl.get_neighbors(ia)
pos_ac = atoms.get_positions() - atoms.get_positions()[ia]
for ib, offset in zip(indices, offsets):
weight = 1
if offset.any(): # this comes from a periodic image
weight = 0.5 # count half the bond only
dist_c = pos_ac[ib] + np.dot(offset, atoms.get_cell())
dist = np.linalg.norm(dist_c)
al, ap = self.model(atom.symbol, atoms[ib].symbol, dist)
eye3 = np.eye(3) / 3
alpha += weight * (al + 2 * ap) * eye3
alpha += weight * (al - ap) * (
np.outer(dist_c, dist_c) / dist**2 - eye3)
return alpha / Bohr / Ha
|