1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
"""Checkpointing and restart functionality for scripts using ASE Atoms objects.
Initialize checkpoint object:
CP = Checkpoint('checkpoints.db')
Checkpointed code block in try ... except notation:
try:
a, C, C_err = CP.load()
except NoCheckpoint:
C, C_err = fit_elastic_constants(a)
CP.save(a, C, C_err)
Checkpoint code block, shorthand notation:
C, C_err = CP(fit_elastic_constants)(a)
Example for checkpointing within an iterative loop, e.g. for searching crack
tip position:
try:
a, converged, tip_x, tip_y = CP.load()
except NoCheckpoint:
converged = False
tip_x = tip_x0
tip_y = tip_y0
while not converged:
... do something to find better crack tip position ...
converged = ...
CP.flush(a, converged, tip_x, tip_y)
The simplest way to use checkpointing is through the CheckpointCalculator. It
wraps any calculator object and does a checkpoint whenever a calculation
is performed:
calc = ...
cp_calc = CheckpointCalculator(calc)
atoms.calc = cp_calc
e = atoms.get_potential_energy() # 1st time, does calc, writes to checkfile
# subsequent runs, reads from checkpoint
"""
from typing import Dict, Any
import numpy as np
import ase
from ase.db import connect
from ase.calculators.calculator import Calculator
class NoCheckpoint(Exception):
pass
class DevNull:
def write(str, *args):
pass
class Checkpoint:
_value_prefix = '_values_'
def __init__(self, db='checkpoints.db', logfile=None):
self.db = db
if logfile is None:
logfile = DevNull()
self.logfile = logfile
self.checkpoint_id = [0]
self.in_checkpointed_region = False
def __call__(self, func, *args, **kwargs):
checkpoint_func_name = str(func)
def decorated_func(*args, **kwargs):
# Get the first ase.Atoms object.
atoms = None
for a in args:
if atoms is None and isinstance(a, ase.Atoms):
atoms = a
try:
retvals = self.load(atoms=atoms)
except NoCheckpoint:
retvals = func(*args, **kwargs)
if isinstance(retvals, tuple):
self.save(*retvals, atoms=atoms,
checkpoint_func_name=checkpoint_func_name)
else:
self.save(retvals, atoms=atoms,
checkpoint_func_name=checkpoint_func_name)
return retvals
return decorated_func
def _increase_checkpoint_id(self):
if self.in_checkpointed_region:
self.checkpoint_id += [1]
else:
self.checkpoint_id[-1] += 1
self.logfile.write('Entered checkpoint region '
'{0}.\n'.format(self.checkpoint_id))
self.in_checkpointed_region = True
def _decrease_checkpoint_id(self):
self.logfile.write('Leaving checkpoint region '
'{0}.\n'.format(self.checkpoint_id))
if not self.in_checkpointed_region:
self.checkpoint_id = self.checkpoint_id[:-1]
assert len(self.checkpoint_id) >= 1
self.in_checkpointed_region = False
assert self.checkpoint_id[-1] >= 1
def _mangled_checkpoint_id(self):
"""
Returns a mangled checkpoint id string:
check_c_1:c_2:c_3:...
E.g. if checkpoint is nested and id is [3,2,6] it returns:
'check3:2:6'
"""
return 'check' + ':'.join(str(id) for id in self.checkpoint_id)
def load(self, atoms=None):
"""
Retrieve checkpoint data from file. If atoms object is specified, then
the calculator connected to that object is copied to all returning
atoms object.
Returns tuple of values as passed to flush or save during checkpoint
write.
"""
self._increase_checkpoint_id()
retvals = []
with connect(self.db) as db:
try:
dbentry = db.get(checkpoint_id=self._mangled_checkpoint_id())
except KeyError:
raise NoCheckpoint
data = dbentry.data
atomsi = data['checkpoint_atoms_args_index']
i = 0
while (i == atomsi or
'{0}{1}'.format(self._value_prefix, i) in data):
if i == atomsi:
newatoms = dbentry.toatoms()
if atoms is not None:
# Assign calculator
newatoms.calc = atoms.calc
retvals += [newatoms]
else:
retvals += [data['{0}{1}'.format(self._value_prefix, i)]]
i += 1
self.logfile.write('Successfully restored checkpoint '
'{0}.\n'.format(self.checkpoint_id))
self._decrease_checkpoint_id()
if len(retvals) == 1:
return retvals[0]
else:
return tuple(retvals)
def _flush(self, *args, **kwargs):
data = dict(('{0}{1}'.format(self._value_prefix, i), v)
for i, v in enumerate(args))
try:
atomsi = [isinstance(v, ase.Atoms) for v in args].index(True)
atoms = args[atomsi]
del data['{0}{1}'.format(self._value_prefix, atomsi)]
except ValueError:
atomsi = -1
try:
atoms = kwargs['atoms']
except KeyError:
raise RuntimeError('No atoms object provided in arguments.')
try:
del kwargs['atoms']
except KeyError:
pass
data['checkpoint_atoms_args_index'] = atomsi
data.update(kwargs)
with connect(self.db) as db:
try:
dbentry = db.get(checkpoint_id=self._mangled_checkpoint_id())
del db[dbentry.id]
except KeyError:
pass
db.write(atoms, checkpoint_id=self._mangled_checkpoint_id(),
data=data)
self.logfile.write('Successfully stored checkpoint '
'{0}.\n'.format(self.checkpoint_id))
def flush(self, *args, **kwargs):
"""
Store data to a checkpoint without increasing the checkpoint id. This
is useful to continuously update the checkpoint state in an iterative
loop.
"""
# If we are flushing from a successfully restored checkpoint, then
# in_checkpointed_region will be set to False. We need to reset to True
# because a call to flush indicates that this checkpoint is still
# active.
self.in_checkpointed_region = False
self._flush(*args, **kwargs)
def save(self, *args, **kwargs):
"""
Store data to a checkpoint and increase the checkpoint id. This closes
the checkpoint.
"""
self._decrease_checkpoint_id()
self._flush(*args, **kwargs)
def atoms_almost_equal(a, b, tol=1e-9):
return (np.abs(a.positions - b.positions).max() < tol and
(a.numbers == b.numbers).all() and
np.abs(a.cell - b.cell).max() < tol and
(a.pbc == b.pbc).all())
class CheckpointCalculator(Calculator):
"""
This wraps any calculator object to checkpoint whenever a calculation
is performed.
This is particularly useful for expensive calculators, e.g. DFT and
allows usage of complex workflows.
Example usage:
calc = ...
cp_calc = CheckpointCalculator(calc)
atoms.calc = cp_calc
e = atoms.get_potential_energy()
# 1st time, does calc, writes to checkfile
# subsequent runs, reads from checkpoint file
"""
implemented_properties = ase.calculators.calculator.all_properties
default_parameters: Dict[str, Any] = {}
name = 'CheckpointCalculator'
property_to_method_name = {
'energy': 'get_potential_energy',
'energies': 'get_potential_energies',
'forces': 'get_forces',
'stress': 'get_stress',
'stresses': 'get_stresses'}
def __init__(self, calculator, db='checkpoints.db', logfile=None):
Calculator.__init__(self)
self.calculator = calculator
if logfile is None:
logfile = DevNull()
self.checkpoint = Checkpoint(db, logfile)
self.logfile = logfile
def calculate(self, atoms, properties, system_changes):
Calculator.calculate(self, atoms, properties, system_changes)
try:
results = self.checkpoint.load(atoms)
prev_atoms, results = results[0], results[1:]
try:
assert atoms_almost_equal(atoms, prev_atoms)
except AssertionError:
raise AssertionError('mismatch between current atoms and '
'those read from checkpoint file')
self.logfile.write('retrieved results for {0} from checkpoint\n'
.format(properties))
# save results in calculator for next time
if isinstance(self.calculator, Calculator):
if not hasattr(self.calculator, 'results'):
self.calculator.results = {}
self.calculator.results.update(dict(zip(properties, results)))
except NoCheckpoint:
if isinstance(self.calculator, Calculator):
self.logfile.write('doing calculation of {0} with new-style '
'calculator interface\n'.format(properties))
self.calculator.calculate(atoms, properties, system_changes)
results = [self.calculator.results[prop]
for prop in properties]
else:
self.logfile.write('doing calculation of {0} with old-style '
'calculator interface\n'.format(properties))
results = []
for prop in properties:
method_name = self.property_to_method_name[prop]
method = getattr(self.calculator, method_name)
results.append(method(atoms))
_calculator = atoms.calc
try:
atoms.calc = self.calculator
self.checkpoint.save(atoms, *results)
finally:
atoms.calc = _calculator
self.results = dict(zip(properties, results))
|