1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
"""Effective medium theory potential."""
from math import sqrt, exp, log
import numpy as np
from ase.data import chemical_symbols, atomic_numbers
from ase.units import Bohr
from ase.neighborlist import NeighborList
from ase.calculators.calculator import (Calculator, all_changes,
PropertyNotImplementedError)
parameters = {
# E0 s0 V0 eta2 kappa lambda n0
# eV bohr eV bohr^-1 bohr^-1 bohr^-1 bohr^-3
'Al': (-3.28, 3.00, 1.493, 1.240, 2.000, 1.169, 0.00700),
'Cu': (-3.51, 2.67, 2.476, 1.652, 2.740, 1.906, 0.00910),
'Ag': (-2.96, 3.01, 2.132, 1.652, 2.790, 1.892, 0.00547),
'Au': (-3.80, 3.00, 2.321, 1.674, 2.873, 2.182, 0.00703),
'Ni': (-4.44, 2.60, 3.673, 1.669, 2.757, 1.948, 0.01030),
'Pd': (-3.90, 2.87, 2.773, 1.818, 3.107, 2.155, 0.00688),
'Pt': (-5.85, 2.90, 4.067, 1.812, 3.145, 2.192, 0.00802),
# extra parameters - just for fun ...
'H': (-3.21, 1.31, 0.132, 2.652, 2.790, 3.892, 0.00547),
'C': (-3.50, 1.81, 0.332, 1.652, 2.790, 1.892, 0.01322),
'N': (-5.10, 1.88, 0.132, 1.652, 2.790, 1.892, 0.01222),
'O': (-4.60, 1.95, 0.332, 1.652, 2.790, 1.892, 0.00850)}
beta = 1.809 # (16 * pi / 3)**(1.0 / 3) / 2**0.5, preserve historical rounding
class EMT(Calculator):
"""Python implementation of the Effective Medium Potential.
Supports the following standard EMT metals:
Al, Cu, Ag, Au, Ni, Pd and Pt.
In addition, the following elements are supported.
They are NOT well described by EMT, and the parameters
are not for any serious use:
H, C, N, O
The potential takes a single argument, ``asap_cutoff``
(default: False). If set to True, the cutoff mimics
how Asap does it; most importantly the global cutoff
is chosen from the largest atom present in the simulation,
if False it is chosen from the largest atom in the parameter
table. True gives the behaviour of the Asap code and
older EMT implementations, although the results are not
bitwise identical.
"""
implemented_properties = ['energy', 'energies', 'forces',
'stress', 'magmom', 'magmoms']
nolabel = True
default_parameters = {'asap_cutoff': False}
def __init__(self, **kwargs):
Calculator.__init__(self, **kwargs)
def initialize(self, atoms):
self.par = {}
self.rc = 0.0
self.numbers = atoms.get_atomic_numbers()
if self.parameters.asap_cutoff:
relevant_pars = {}
for symb, p in parameters.items():
if atomic_numbers[symb] in self.numbers:
relevant_pars[symb] = p
else:
relevant_pars = parameters
maxseq = max(par[1] for par in relevant_pars.values()) * Bohr
rc = self.rc = beta * maxseq * 0.5 * (sqrt(3) + sqrt(4))
rr = rc * 2 * sqrt(4) / (sqrt(3) + sqrt(4))
self.acut = np.log(9999.0) / (rr - rc)
if self.parameters.asap_cutoff:
self.rc_list = self.rc * 1.045
else:
self.rc_list = self.rc + 0.5
for Z in self.numbers:
if Z not in self.par:
sym = chemical_symbols[Z]
if sym not in parameters:
raise NotImplementedError('No EMT-potential for {0}'
.format(sym))
p = parameters[sym]
s0 = p[1] * Bohr
eta2 = p[3] / Bohr
kappa = p[4] / Bohr
x = eta2 * beta * s0
gamma1 = 0.0
gamma2 = 0.0
for i, n in enumerate([12, 6, 24]):
r = s0 * beta * sqrt(i + 1)
x = n / (12 * (1.0 + exp(self.acut * (r - rc))))
gamma1 += x * exp(-eta2 * (r - beta * s0))
gamma2 += x * exp(-kappa / beta * (r - beta * s0))
self.par[Z] = {'E0': p[0],
's0': s0,
'V0': p[2],
'eta2': eta2,
'kappa': kappa,
'lambda': p[5] / Bohr,
'n0': p[6] / Bohr**3,
'rc': rc,
'gamma1': gamma1,
'gamma2': gamma2}
self.ksi = {}
for s1, p1 in self.par.items():
self.ksi[s1] = {}
for s2, p2 in self.par.items():
self.ksi[s1][s2] = p2['n0'] / p1['n0']
self.energies = np.empty(len(atoms))
self.forces = np.empty((len(atoms), 3))
self.stress = np.empty((3, 3))
self.sigma1 = np.empty(len(atoms))
self.deds = np.empty(len(atoms))
self.nl = NeighborList([0.5 * self.rc_list] * len(atoms),
self_interaction=False)
def calculate(self, atoms=None, properties=['energy'],
system_changes=all_changes):
Calculator.calculate(self, atoms, properties, system_changes)
if 'numbers' in system_changes:
self.initialize(self.atoms)
positions = self.atoms.positions
numbers = self.atoms.numbers
cell = self.atoms.cell
self.nl.update(self.atoms)
self.energy = 0.0
self.energies[:] = 0
self.sigma1[:] = 0.0
self.forces[:] = 0.0
self.stress[:] = 0.0
natoms = len(self.atoms)
for a1 in range(natoms):
Z1 = numbers[a1]
p1 = self.par[Z1]
ksi = self.ksi[Z1]
neighbors, offsets = self.nl.get_neighbors(a1)
offsets = np.dot(offsets, cell)
for a2, offset in zip(neighbors, offsets):
d = positions[a2] + offset - positions[a1]
r = sqrt(np.dot(d, d))
if r < self.rc_list:
Z2 = numbers[a2]
p2 = self.par[Z2]
self.interact1(a1, a2, d, r, p1, p2, ksi[Z2])
for a in range(natoms):
Z = numbers[a]
p = self.par[Z]
try:
ds = -log(self.sigma1[a] / 12) / (beta * p['eta2'])
except (OverflowError, ValueError):
self.deds[a] = 0.0
self.energy -= p['E0']
self.energies[a] -= p['E0']
continue
x = p['lambda'] * ds
y = exp(-x)
z = 6 * p['V0'] * exp(-p['kappa'] * ds)
self.deds[a] = ((x * y * p['E0'] * p['lambda'] + p['kappa'] * z) /
(self.sigma1[a] * beta * p['eta2']))
E = p['E0'] * ((1 + x) * y - 1) + z
self.energy += E
self.energies[a] += E
for a1 in range(natoms):
Z1 = numbers[a1]
p1 = self.par[Z1]
ksi = self.ksi[Z1]
neighbors, offsets = self.nl.get_neighbors(a1)
offsets = np.dot(offsets, cell)
for a2, offset in zip(neighbors, offsets):
d = positions[a2] + offset - positions[a1]
r = sqrt(np.dot(d, d))
if r < self.rc_list:
Z2 = numbers[a2]
p2 = self.par[Z2]
self.interact2(a1, a2, d, r, p1, p2, ksi[Z2])
self.results['energy'] = self.energy
self.results['energies'] = self.energies
self.results['free_energy'] = self.energy
self.results['forces'] = self.forces
if 'stress' in properties:
if self.atoms.cell.rank == 3:
self.stress += self.stress.T.copy()
self.stress *= -0.5 / self.atoms.get_volume()
self.results['stress'] = self.stress.flat[[0, 4, 8, 5, 2, 1]]
else:
raise PropertyNotImplementedError
def interact1(self, a1, a2, d, r, p1, p2, ksi):
x = exp(self.acut * (r - self.rc))
theta = 1.0 / (1.0 + x)
y1 = (0.5 * p1['V0'] * exp(-p2['kappa'] * (r / beta - p2['s0'])) *
ksi / p1['gamma2'] * theta)
y2 = (0.5 * p2['V0'] * exp(-p1['kappa'] * (r / beta - p1['s0'])) /
ksi / p2['gamma2'] * theta)
self.energy -= y1 + y2
self.energies[a1] -= (y1 + y2) / 2
self.energies[a2] -= (y1 + y2) / 2
f = ((y1 * p2['kappa'] + y2 * p1['kappa']) / beta +
(y1 + y2) * self.acut * theta * x) * d / r
self.forces[a1] += f
self.forces[a2] -= f
self.stress -= np.outer(f, d)
self.sigma1[a1] += (exp(-p2['eta2'] * (r - beta * p2['s0'])) *
ksi * theta / p1['gamma1'])
self.sigma1[a2] += (exp(-p1['eta2'] * (r - beta * p1['s0'])) /
ksi * theta / p2['gamma1'])
def interact2(self, a1, a2, d, r, p1, p2, ksi):
x = exp(self.acut * (r - self.rc))
theta = 1.0 / (1.0 + x)
y1 = (exp(-p2['eta2'] * (r - beta * p2['s0'])) *
ksi / p1['gamma1'] * theta * self.deds[a1])
y2 = (exp(-p1['eta2'] * (r - beta * p1['s0'])) /
ksi / p2['gamma1'] * theta * self.deds[a2])
f = ((y1 * p2['eta2'] + y2 * p1['eta2']) +
(y1 + y2) * self.acut * theta * x) * d / r
self.forces[a1] -= f
self.forces[a2] += f
self.stress += np.outer(f, d)
|