1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
|
"""This module defines an ASE interface to FLAPW code FLEUR.
http://www.flapw.de
"""
import os
from subprocess import Popen, PIPE
import re
import numpy as np
from ase.units import Hartree, Bohr
from ase.calculators.calculator import PropertyNotImplementedError
class FLEUR:
"""Class for doing FLEUR calculations.
In order to use fleur one has to define the following environment
variables:
FLEUR_INPGEN path to the input generator (inpgen.x) of fleur
FLEUR path to the fleur executable. Note that fleur uses different
executable for real and complex cases (systems with/without inversion
symmetry), so FLEUR must point to the correct executable.
The initialize_density step can be performed in parallel
only if run on one compute node. FLEUR_SERIAL is used for this step.
It is probable that user needs to tune manually the input file before
the actual calculation, so in addition to the standard
get_potential_energy function this class defines the following utility
functions:
write_inp
generate the input file *inp*
initialize_density
creates the initial density after possible manual edits of *inp*
calculate
convergence the total energy. With fleur, one specifies always
only the number of SCF-iterations so this function launches
the executable several times and monitors the convergence.
relax
Uses fleur's internal algorithm for structure
optimization. Requires that the proper optimization parameters
(atoms to optimize etc.) are specified by hand in *inp*
"""
def __init__(self, xc='LDA', kpts=None, nbands=None, convergence=None,
width=None, kmax=None, mixer=None, maxiter=None,
maxrelax=20, workdir=None, equivatoms=True, rmt=None,
lenergy=None):
"""Construct FLEUR-calculator object.
Parameters
==========
xc: str
Exchange-correlation functional. Must be one of LDA, PBE,
RPBE.
kpts: list of three int
Monkhost-Pack sampling.
nbands: int
Number of bands. (not used at the moment)
convergence: dictionary
Convergence parameters (currently only energy in eV)
{'energy' : float}
width: float
Fermi-distribution width in eV.
kmax: float
Plane wave cutoff in a.u. If kmax is set then:
gmax = 3.0 * kmax
gmaxxc = int(2.5 * kmax * 10)/10. (from set_inp.f)
mixer: dictionary
Mixing parameters imix, alpha, spinf
{'imix' : int, 'alpha' : float, 'spinf' : float}
maxiter: int
Maximum number of SCF iterations (name in the code: itmax)
maxrelax: int
Maximum number of relaxation steps
workdir: str
Working directory for the calculation
equivatoms: bool
If False: generate inequivalent atoms (default is True).
Setting to False allows one for example to calculate spin-polarized dimers.
See http://www.flapw.de/pm/index.php?n=User-Documentation.InputFileForTheInputGenerator.
rmt: dictionary
rmt values in Angstrom., e.g: {'O': 1.1 * Bohr, 'N': -0.1}
Negative number with respect to the rmt set by FLEUR.
lenergy: float
Lower energy in eV. Default -1.8 * Hartree.
"""
self.xc = xc
self.kpts = kpts
self.nbands = nbands
self.width = width
self.kmax = kmax
self.itmax_step_default = 9 # SCF steps per run (default)
self.itmax_step = 5 # SCF steps per run
assert self.itmax_step_default <= 9
assert self.itmax_step <= self.itmax_step_default
self.itmax_default = 40
if maxiter is None:
self.itmax = self.itmax_default
else:
self.itmax = maxiter
self.maxrelax = maxrelax
self.mixer = mixer
if convergence:
self.convergence = convergence
self.convergence['energy'] /= Hartree
else:
self.convergence = {'energy' : 0.0001}
self.start_dir = None
self.workdir = workdir
if self.workdir:
self.start_dir = os.getcwd()
if not os.path.isdir(workdir):
os.mkdir(workdir)
else:
self.workdir = '.'
self.start_dir = '.'
self.equivatoms = equivatoms
self.rmt = rmt
self.lenergy = lenergy
self.converged = False
def run_executable(self, mode='fleur', executable='FLEUR'):
assert executable in ['FLEUR', 'FLEUR_SERIAL']
executable_use = executable
if executable == 'FLEUR_SERIAL' and not os.environ.get(executable, ''):
executable_use = 'FLEUR' # use FLEUR if FLEUR_SERIAL not set
try:
code_exe = os.environ[executable_use]
except KeyError:
raise RuntimeError('Please set ' + executable_use)
p = Popen(code_exe, shell=True, stdin=PIPE, stdout=PIPE,
stderr=PIPE)
stat = p.wait()
out = p.stdout.read()
err = p.stderr.read()
print(mode, ': stat= ', stat, ' out= ', out, ' err=', err)
# special handling of exit status from density generation and regular fleur.x
if mode in ['density']:
if '!' in err:
os.chdir(self.start_dir)
raise RuntimeError(executable_use + ' exited with a code %s' % err)
else:
if stat != 0:
os.chdir(self.start_dir)
raise RuntimeError(executable_use + ' exited with a code %d' % stat)
def update(self, atoms):
"""Update a FLEUR calculation."""
if (not self.converged or
len(self.numbers) != len(atoms) or
(self.numbers != atoms.get_atomic_numbers()).any()):
self.initialize(atoms)
self.calculate(atoms)
elif ((self.positions != atoms.get_positions()).any() or
(self.pbc != atoms.get_pbc()).any() or
(self.cell != atoms.get_cell()).any()):
self.converged = False
self.initialize(atoms)
self.calculate(atoms)
def initialize(self, atoms):
"""Create an input file inp and generate starting density."""
self.converged = False
self.initialize_inp(atoms)
self.initialize_density(atoms)
def initialize_inp(self, atoms):
"""Create a inp file"""
os.chdir(self.workdir)
self.numbers = atoms.get_atomic_numbers().copy()
self.positions = atoms.get_positions().copy()
self.cell = atoms.get_cell().copy()
self.pbc = atoms.get_pbc().copy()
# create the input
self.write_inp(atoms)
os.chdir(self.start_dir)
def initialize_density(self, atoms):
"""Creates a new starting density."""
os.chdir(self.workdir)
# remove possible conflicting files
files2remove = ['cdn1', 'fl7para', 'stars', 'wkf2', 'enpara',
'kpts', 'broyd', 'broyd.7', 'tmat', 'tmas']
if 0:
# avoid STOP bzone3 error by keeping the kpts file
files2remove.remove('kpts')
for f in files2remove:
if os.path.isfile(f):
os.remove(f)
# generate the starting density
os.system("sed -i -e 's/strho=./strho=T/' inp")
self.run_executable(mode='density', executable='FLEUR_SERIAL')
os.system("sed -i -e 's/strho=./strho=F/' inp")
os.chdir(self.start_dir)
# generate spin-polarized density
# http://www.flapw.de/pm/index.php?n=User-Documentation.Magnetism
if atoms.get_initial_magnetic_moments().sum() > 0.0:
os.chdir(self.workdir)
# generate cdnc file (1 SCF step: swsp=F - non-magnetic)
os.system("sed -i -e 's/itmax=.*,maxiter/itmax= 1,maxiter/' inp")
self.run_executable(mode='cdnc', executable='FLEUR')
sedline = "'s/itmax=.*,maxiter/itmax= '"
sedline += str(self.itmax_step_default) + "',maxiter/'"
os.system("sed -i -e " + sedline + " inp")
# generate spin polarized density (swsp=T)
os.system("sed -i -e 's/swsp=./swsp=T/' inp")
self.run_executable(mode='swsp', executable='FLEUR_SERIAL')
# restore swsp=F
os.system("sed -i -e 's/swsp=./swsp=F/' inp")
os.chdir(self.start_dir)
def get_potential_energy(self, atoms, force_consistent=False):
self.update(atoms)
if force_consistent:
return self.efree * Hartree
else:
# Energy extrapolated to zero Kelvin:
return (self.etotal + self.efree) / 2 * Hartree
def get_number_of_iterations(self, atoms):
self.update(atoms)
return self.niter
def get_forces(self, atoms):
self.update(atoms)
# electronic structure is converged, so let's calculate forces:
# TODO
return np.array((0.0, 0.0, 0.0))
def get_stress(self, atoms):
raise PropertyNotImplementedError
def get_dipole_moment(self, atoms):
"""Returns total dipole moment of the system."""
raise PropertyNotImplementedError
def calculate(self, atoms):
"""Converge a FLEUR calculation to self-consistency.
Input files should be generated before calling this function
FLEUR performs always fixed number of SCF steps. This function
reduces the number of iterations gradually, however, a minimum
of five SCF steps is always performed.
"""
os.chdir(self.workdir)
self.niter = 0
out = ''
err = ''
while not self.converged:
if self.niter > self.itmax:
os.chdir(self.start_dir)
raise RuntimeError('FLEUR failed to convergence in %d iterations' % self.itmax)
self.run_executable(mode='fleur', executable='FLEUR')
# catenate new output with the old one
os.system('cat out >> out.old')
self.read()
self.check_convergence()
if os.path.exists('out.old'):
os.rename('out.old', 'out')
# After convergence clean up broyd* files
os.system('rm -f broyd*')
os.chdir(self.start_dir)
return out, err
def relax(self, atoms):
"""Currently, user has to manually define relaxation parameters
(atoms to relax, relaxation directions, etc.) in inp file
before calling this function."""
nrelax = 0
relaxed = False
while not relaxed:
# Calculate electronic structure
self.calculate(atoms)
# Calculate the Pulay forces
os.system("sed -i -e 's/l_f=./l_f=T/' inp")
while True:
self.converged = False
out, err = self.calculate(atoms)
if 'GEO new' in err:
os.chdir(self.workdir)
os.rename('inp_new', 'inp')
os.chdir(self.start_dir)
break
if 'GEO: Des woas' in err:
relaxed = True
break
nrelax += 1
# save the out and cdn1 files
os.system('cp out out_%d' % nrelax)
os.system('cp cdn1 cdn1_%d' % nrelax)
if nrelax > self.maxrelax:
os.chdir(self.start_dir)
raise RuntimeError('Failed to relax in %d iterations' % self.maxrelax)
self.converged = False
def write_inp(self, atoms):
"""Write the *inp* input file of FLEUR.
First, the information from Atoms is written to the simple input
file and the actual input file *inp* is then generated with the
FLEUR input generator. The location of input generator is specified
in the environment variable FLEUR_INPGEN.
Finally, the *inp* file is modified according to the arguments of
the FLEUR calculator object.
"""
with open('inp_simple', 'w') as fh:
self._write_inp(atoms, fh)
def _write_inp(self, atoms, fh):
fh.write('FLEUR input generated with ASE\n')
fh.write('\n')
if atoms.pbc[2]:
film = 'f'
else:
film = 't'
fh.write('&input film=%s /' % film)
fh.write('\n')
for vec in atoms.get_cell():
fh.write(' ')
for el in vec:
fh.write(' %21.16f' % (el/Bohr))
fh.write('\n')
fh.write(' %21.16f\n' % 1.0)
fh.write(' %21.16f %21.16f %21.16f\n' % (1.0, 1.0, 1.0))
fh.write('\n')
natoms = len(atoms)
fh.write(' %6d\n' % natoms)
positions = atoms.get_scaled_positions()
if not atoms.pbc[2]:
# in film calculations z position has to be in absolute
# coordinates and symmetrical
cart_pos = atoms.get_positions()
cart_pos[:, 2] -= atoms.get_cell()[2, 2]/2.0
positions[:, 2] = cart_pos[:, 2] / Bohr
atomic_numbers = atoms.get_atomic_numbers()
for n, (Z, pos) in enumerate(zip(atomic_numbers, positions)):
if self.equivatoms:
fh.write('%3d' % Z)
else:
# generate inequivalent atoms, by using non-integer Z
# (only the integer part will be used as Z of the atom)
# see http://www.flapw.de/pm/index.php?n=User-Documentation.InputFileForTheInputGenerator
fh.write('%3d.%04d' % (Z, n)) # MDTMP don't think one can calculate more that 10**4 atoms
for el in pos:
fh.write(' %21.16f' % el)
fh.write('\n')
# avoid "STOP read_record: ERROR reading input"
fh.write('&end /')
try:
inpgen = os.environ['FLEUR_INPGEN']
except KeyError:
raise RuntimeError('Please set FLEUR_INPGEN')
# rename the previous inp if it exists
if os.path.isfile('inp'):
os.rename('inp', 'inp.bak')
os.system('%s -old < inp_simple' % inpgen)
# read the whole inp-file for possible modifications
with open('inp', 'r') as fh:
lines = fh.readlines()
window_ln = -1
for ln, line in enumerate(lines):
# XC potential
if line.startswith('pbe'):
if self.xc == 'PBE':
pass
elif self.xc == 'RPBE':
lines[ln] = 'rpbe non-relativi\n'
elif self.xc == 'LDA':
lines[ln] = 'mjw non-relativic\n'
del lines[ln+1]
else:
raise RuntimeError('XC-functional %s is not supported' % self.xc)
if line.startswith('Window'):
# few things are set around this line
window_ln = ln
# kmax
if self.kmax and ln == window_ln:
line = '%10.5f\n' % self.kmax
lines[ln+2] = line
# lower energy
if self.lenergy is not None and ln == window_ln:
l0 = lines[ln+1].split()[0]
l = lines[ln+1].replace(l0, '%8.5f' % (self.lenergy / Hartree))
lines[ln+1] = l
# gmax cutoff for PW-expansion of potential & density ( > 2*kmax)
# gmaxxc cutoff for PW-expansion of XC-potential ( > 2*kmax, < gmax)
if self.kmax and line.startswith('vchk'):
gmax = 3. * self.kmax
line = ' %10.6f %10.6f\n' % (gmax, int(2.5 * self.kmax * 10)/10.)
lines[ln-1] = line
# Fermi width
if self.width and line.startswith('gauss'):
line = 'gauss=F %7.5ftria=F\n' % (self.width / Hartree)
lines[ln] = line
# kpts
if self.kpts and line.startswith('nkpt'):
line = 'nkpt= nx=%2d,ny=%2d,nz=%2d\n' % (self.kpts[0],
self.kpts[1],
self.kpts[2])
lines[ln] = line
# itmax
if self.itmax < self.itmax_step_default and line.startswith('itmax'):
# decrease number of SCF steps; increasing is done by 'while not self.converged:'
lsplit = line.split(',')
if lsplit[0].find('itmax') != -1:
lsplit[0] = 'itmax=' + ('%2d' % self.itmax)
lines[ln] = ",".join(lsplit)
# Mixing
if self.mixer and line.startswith('itmax'):
imix = self.mixer['imix']
alpha = self.mixer['alpha']
spinf = self.mixer['spinf']
line_end = 'imix=%2d,alpha=%6.2f,spinf=%6.2f\n' % (imix,
alpha,
spinf)
line = line[:21] + line_end
lines[ln] = line
# jspins and swsp
if atoms.get_initial_magnetic_moments().sum() > 0.0:
assert not self.equivatoms, 'equivatoms currently not allowed in magnetic systems'
if line.find('jspins=1') != -1:
lines[ln] = line.replace('jspins=1', 'jspins=2')
if line.startswith('swsp=F'):
# setting initial magnetic moments for all atom types
lines[ln] = 'swsp=F'
for m in atoms.get_initial_magnetic_moments():
lines[ln] += (' %5.2f' % m)
lines[ln] += '\n'
# inpgen produces incorrect symbol 'J' for Iodine
if line.startswith(' J 53'):
lines[ln] = lines[ln].replace(' J 53', ' I 53')
# rmt
if self.rmt is not None:
for s in list(set(atoms.get_chemical_symbols())): # unique
if s in self.rmt:
# set the requested rmt
for ln, line in enumerate(lines):
ls = line.split()
if len(ls) == 7 and ls[0].strip() == s:
rorig = ls[5].strip()
if self.rmt[s] < 0.0:
r = float(rorig) + self.rmt[s] / Bohr
else:
r = self.rmt[s] / Bohr
print(s, rorig, r)
lines[ln] = lines[ln].replace(rorig, ("%.6f" % r))
# write everything back to inp
with open('inp', 'w') as fh:
for line in lines:
fh.write(line)
def read(self):
"""Read results from FLEUR's text-output file `out`."""
with open('out', 'r') as fd:
lines = fd.readlines()
# total energies
self.total_energies = []
pat = re.compile(r'(.*total energy=)(\s)*([-0-9.]*)')
for line in lines:
m = pat.match(line)
if m:
self.total_energies.append(float(m.group(3)))
self.etotal = self.total_energies[-1]
# free_energies
self.free_energies = []
pat = re.compile(r'(.*free energy=)(\s)*([-0-9.]*)')
for line in lines:
m = pat.match(line)
if m:
self.free_energies.append(float(m.group(3)))
self.efree = self.free_energies[-1]
# TODO forces, charge density difference...
def check_convergence(self):
"""Check the convergence of calculation"""
energy_error = np.ptp(self.total_energies[-3:])
self.converged = energy_error < self.convergence['energy']
# TODO check charge convergence
# reduce the itmax in inp
with open('inp', 'r') as fh:
lines = fh.readlines()
pat = re.compile('(itmax=)([ 0-9]*)')
with open('inp', 'w') as fh:
for line in lines:
m = pat.match(line)
if m:
itmax = int(m.group(2))
self.niter += itmax
itmax_new = itmax // 2
itmax = max(self.itmax_step, itmax_new)
line = 'itmax=%2d' % itmax + line[8:]
fh.write(line)
|