1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
"""
Wrappers that provide a minimal interface to kimpy methods and objects
Daniel S. Karls
University of Minnesota
"""
import functools
import kimpy
from .exceptions import KIMModelNotFound, KIMModelInitializationError, KimpyError
def check_call(f, *args):
"""
Given a function that returns either an integer error code or a
tuple whose last element is an integer error code, call it with the
requested arguments. If a non-zero error code was returned, raise
an exception. Otherwise, pass along the rest of the objects
returned by the function call.
"""
def _check_error(error, msg):
if error != 0 and error is not None:
raise KimpyError('Calling "{}" failed.'.format(msg))
ret = f(*args)
if isinstance(ret, int):
# Only an error code was returned
_check_error(ret, f.__name__)
else:
# An error code plus other variables were returned
error = ret[-1]
_check_error(error, f.__name__)
if len(ret[:-1]) == 1:
# Pick the single remaining element out of the tuple
return ret[0]
else:
# Return the tuple containing the rest of the elements
return ret[:-1]
def check_call_wrapper(func):
@functools.wraps(func)
def myfunc(*args, **kwargs):
return check_call(func, *args)
return myfunc
# kimpy methods wrapped in ``check_error``
collections_create = functools.partial(check_call, kimpy.collections.create)
model_create = functools.partial(check_call, kimpy.model.create)
simulator_model_create = functools.partial(check_call, kimpy.simulator_model.create)
get_species_name = functools.partial(check_call, kimpy.species_name.get_species_name)
# kimpy attributes (here to avoid importing kimpy in higher-level modules)
collection_item_type_portableModel = kimpy.collection_item_type.portableModel
class ModelCollections:
"""
KIM Portable Models and Simulator Models are installed/managed into
different "collections". In order to search through the different
KIM API model collections on the system, a corresponding object must
be instantiated. For more on model collections, see the KIM API's
install file:
https://github.com/openkim/kim-api/blob/master/INSTALL
"""
def __init__(self):
self.collection = collections_create()
def __del__(self):
self.destroy()
def __enter__(self):
return self
def __exit__(self, exc_type, value, traceback):
self.destroy()
def get_item_type(self, model_name):
try:
model_type = check_call(self.collection.get_item_type, model_name)
except KimpyError:
msg = (
"Could not find model {} installed in any of the KIM API model "
"collections on this system. See "
"https://openkim.org/doc/usage/obtaining-models/ for instructions on "
"installing models.".format(model_name)
)
raise KIMModelNotFound(msg)
return model_type
def destroy(self):
if self.initialized:
kimpy.collections.destroy(self.collection)
del self.collection
@property
def initialized(self):
return hasattr(self, "collection")
class PortableModel:
""" Creates a KIM API Portable Model object and provides a minimal interface to it
"""
def __init__(self, model_name, debug):
self.model_name = model_name
self.debug = debug
# Create KIM API Model object
units_accepted, self.kim_model = model_create(
kimpy.numbering.zeroBased,
kimpy.length_unit.A,
kimpy.energy_unit.eV,
kimpy.charge_unit.e,
kimpy.temperature_unit.K,
kimpy.time_unit.ps,
self.model_name,
)
if not units_accepted:
raise KIMModelInitializationError(
"Requested units not accepted in kimpy.model.create"
)
if self.debug:
l_unit, e_unit, c_unit, te_unit, ti_unit = self.kim_model.get_units()
print("Length unit is: {}".format(l_unit))
print("Energy unit is: {}".format(e_unit))
print("Charge unit is: {}".format(c_unit))
print("Temperature unit is: {}".format(te_unit))
print("Time unit is: {}".format(ti_unit))
print()
def __del__(self):
self.destroy()
def __enter__(self):
return self
def __exit__(self, exc_type, value, traceback):
self.destroy()
def get_model_supported_species_and_codes(self):
"""Get all of the supported species for this model and their
corresponding integer codes that are defined in the KIM API
Returns
-------
species : list of str
Abbreviated chemical symbols of all species the mmodel
supports (e.g. ["Mo", "S"])
codes : list of int
Integer codes used by the model for each species (order
corresponds to the order of ``species``)
"""
species = []
codes = []
num_kim_species = kimpy.species_name.get_number_of_species_names()
for i in range(num_kim_species):
species_name = get_species_name(i)
species_support, code = self.get_species_support_and_code(species_name)
if species_support:
species.append(str(species_name))
codes.append(code)
return species, codes
@check_call_wrapper
def compute(self, compute_args_wrapped, release_GIL):
return self.kim_model.compute(compute_args_wrapped.compute_args, release_GIL)
@check_call_wrapper
def get_species_support_and_code(self, species_name):
return self.kim_model.get_species_support_and_code(species_name)
def get_influence_distance(self):
return self.kim_model.get_influence_distance()
def get_neighbor_list_cutoffs_and_hints(self):
return self.kim_model.get_neighbor_list_cutoffs_and_hints()
def compute_arguments_create(self):
return ComputeArguments(self, self.debug)
def compute_arguments_destroy(self, compute_args_wrapped):
compute_args_wrapped.destroy()
def destroy(self):
if self.initialized:
kimpy.model.destroy(self.kim_model)
del self.kim_model
@property
def initialized(self):
return hasattr(self, "kim_model")
class ComputeArguments:
"""
Creates a KIM API ComputeArguments object from a KIM Portable Model object and
configures it for ASE. A ComputeArguments object is associated with a KIM Portable
Model and is used to inform the KIM API of what the model can compute. It is also
used to register the data arrays that allow the KIM API to pass the atomic
coordinates to the model and retrieve the corresponding energy and forces, etc.
"""
def __init__(self, kim_model_wrapped, debug):
self.kim_model_wrapped = kim_model_wrapped
self.debug = debug
# Create KIM API ComputeArguments object
self.compute_args = check_call(
self.kim_model_wrapped.kim_model.compute_arguments_create
)
# Check compute arguments
kimpy_arg_name = kimpy.compute_argument_name
num_arguments = kimpy_arg_name.get_number_of_compute_argument_names()
if self.debug:
print("Number of compute_args: {}".format(num_arguments))
for i in range(num_arguments):
name = check_call(kimpy_arg_name.get_compute_argument_name, i)
dtype = check_call(kimpy_arg_name.get_compute_argument_data_type, name)
arg_support = self.get_argument_support_status(name)
if self.debug:
print(
"Compute Argument name {:21} is of type {:7} and has support "
"status {}".format(*[str(x) for x in [name, dtype, arg_support]])
)
# See if the model demands that we ask it for anything other than energy and
# forces. If so, raise an exception.
if arg_support == kimpy.support_status.required:
if (
name != kimpy.compute_argument_name.partialEnergy
and name != kimpy.compute_argument_name.partialForces
):
raise KIMModelInitializationError(
"Unsupported required ComputeArgument {}".format(name)
)
# Check compute callbacks
callback_name = kimpy.compute_callback_name
num_callbacks = callback_name.get_number_of_compute_callback_names()
if self.debug:
print()
print("Number of callbacks: {}".format(num_callbacks))
for i in range(num_callbacks):
name = check_call(callback_name.get_compute_callback_name, i)
support_status = self.get_callback_support_status(name)
if self.debug:
print(
"Compute callback {:17} has support status {}".format(
str(name), support_status
)
)
# Cannot handle any "required" callbacks
if support_status == kimpy.support_status.required:
raise KIMModelInitializationError(
"Unsupported required ComputeCallback: {}".format(name)
)
@check_call_wrapper
def set_argument_pointer(self, compute_arg_name, data_object):
return self.compute_args.set_argument_pointer(compute_arg_name, data_object)
@check_call_wrapper
def get_argument_support_status(self, name):
return self.compute_args.get_argument_support_status(name)
@check_call_wrapper
def get_callback_support_status(self, name):
return self.compute_args.get_callback_support_status(name)
@check_call_wrapper
def set_callback(self, compute_callback_name, callback_function, data_object):
return self.compute_args.set_callback(
compute_callback_name, callback_function, data_object
)
@check_call_wrapper
def set_callback_pointer(self, compute_callback_name, callback, data_object):
return self.compute_args.set_callback_pointer(
compute_callback_name, callback, data_object
)
def update(
self, num_particles, species_code, particle_contributing, coords, energy, forces
):
""" Register model input and output in the kim_model object."""
compute_arg_name = kimpy.compute_argument_name
set_argument_pointer = self.set_argument_pointer
set_argument_pointer(compute_arg_name.numberOfParticles, num_particles)
set_argument_pointer(compute_arg_name.particleSpeciesCodes, species_code)
set_argument_pointer(
compute_arg_name.particleContributing, particle_contributing
)
set_argument_pointer(compute_arg_name.coordinates, coords)
set_argument_pointer(compute_arg_name.partialEnergy, energy)
set_argument_pointer(compute_arg_name.partialForces, forces)
if self.debug:
print("Debug: called update_kim")
print()
@check_call_wrapper
def destroy(self):
return self.kim_model_wrapped.kim_model.compute_arguments_destroy(
self.compute_args
)
class SimulatorModel:
""" Creates a KIM API Simulator Model object and provides a minimal
interface to it. This is only necessary in this package in order to
extract any information about a given simulator model because it is
generally embedded in a shared object.
"""
def __init__(self, model_name):
# Create a KIM API Simulator Model object for this model
self.model_name = model_name
self.simulator_model = simulator_model_create(self.model_name)
# Need to close template map in order to access simulator model metadata
self.simulator_model.close_template_map()
def __del__(self):
self.destroy()
def __enter__(self):
return self
def __exit__(self, exc_type, value, traceback):
self.destroy()
def destroy(self):
if self.initialized:
kimpy.simulator_model.destroy(self.simulator_model)
del self.simulator_model
@property
def simulator_name(self):
simulator_name, _ = self.simulator_model.get_simulator_name_and_version()
return simulator_name
@property
def num_supported_species(self):
num_supported_species = self.simulator_model.get_number_of_supported_species()
if num_supported_species == 0:
raise KIMModelInitializationError(
"Unable to determine supported species of simulator model {}.".format(
self.model_name
)
)
else:
return num_supported_species
@property
def supported_species(self):
supported_species = []
for spec_code in range(self.num_supported_species):
species = check_call(self.simulator_model.get_supported_species, spec_code)
supported_species.append(species)
return tuple(supported_species)
@property
def num_metadata_fields(self):
return self.simulator_model.get_number_of_simulator_fields()
@property
def metadata(self):
sm_metadata_fields = {}
for field in range(self.num_metadata_fields):
extent, field_name = check_call(
self.simulator_model.get_simulator_field_metadata, field
)
sm_metadata_fields[field_name] = []
for ln in range(extent):
field_line = check_call(
self.simulator_model.get_simulator_field_line, field, ln
)
sm_metadata_fields[field_name].append(field_line)
return sm_metadata_fields
@property
def supported_units(self):
try:
supported_units = self.metadata["units"][0]
except (KeyError, IndexError):
raise KIMModelInitializationError(
"Unable to determine supported units of simulator model {}.".format(
self.model_name
)
)
return supported_units
@property
def atom_style(self):
"""
See if a 'model-init' field exists in the SM metadata and, if
so, whether it contains any entries including an "atom_style"
command. This is specific to LAMMPS SMs and is only required
for using the LAMMPSrun calculator because it uses
lammps.inputwriter to create a data file. All other content in
'model-init', if it exists, is ignored.
"""
atom_style = None
for ln in self.metadata.get("model-init", []):
if ln.find("atom_style") != -1:
atom_style = ln.split()[1]
return atom_style
@property
def model_defn(self):
return self.metadata["model-defn"]
@property
def initialized(self):
return hasattr(self, "simulator_model")
|