File: neighborlist.py

package info (click to toggle)
python-ase 3.21.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,936 kB
  • sloc: python: 122,428; xml: 946; makefile: 111; javascript: 47
file content (437 lines) | stat: -rw-r--r-- 16,344 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
from collections import defaultdict

import numpy as np
import kimpy
from kimpy import neighlist
from ase.neighborlist import neighbor_list
from ase import Atom

from .kimpy_wrappers import check_call_wrapper


class NeighborList:

    kimpy_arrays = {
        "num_particles": np.intc,
        "coords": np.double,
        "particle_contributing": np.intc,
        "species_code": np.intc,
        "cutoffs": np.double,
        "padding_image_of": np.intc,
        "need_neigh": np.intc,
    }

    def __setattr__(self, name, value):
        """
        Override assignment to any of the attributes listed in
        kimpy_arrays to automatically cast the object to a numpy array.
        This is done to avoid a ton of explicit numpy.array() calls (and
        the possibility that we forget to do the cast).  It is important
        to use np.asarray() here instead of np.array() because using the
        latter will mean that incrementation (+=) will create a new
        object that the reference is bound to, which becomes a problem
        if update_compute_args isn't called to reregister the
        corresponding address with the KIM API.
        """
        if name in self.kimpy_arrays and value is not None:
            value = np.asarray(value, dtype=self.kimpy_arrays[name])
        self.__dict__[name] = value

    def __init__(
        self,
        neigh_skin_ratio,
        model_influence_dist,
        model_cutoffs,
        padding_not_require_neigh,
        debug,
    ):

        self.skin = neigh_skin_ratio * model_influence_dist
        self.influence_dist = model_influence_dist + self.skin
        self.cutoffs = model_cutoffs + self.skin
        self.padding_need_neigh = not padding_not_require_neigh.all()
        self.debug = debug

        if self.debug:
            print()
            print("Calculator skin: {}".format(self.skin))
            print(f"Model influence distance: {model_influence_dist}")
            print(
                "Calculator influence distance (including skin distance): {}"
                "".format(self.influence_dist)
            )
            print("Number of cutoffs: {}".format(model_cutoffs.size))
            print("Model cutoffs: {}".format(model_cutoffs))
            print(
                "Calculator cutoffs (including skin distance): {}"
                "".format(self.cutoffs)
            )
            print(
                "Model needs neighbors of padding atoms: {}"
                "".format(self.padding_need_neigh)
            )
            print()

        # Attributes to be set by subclasses
        self.neigh = None
        self.num_contributing_particles = None
        self.padding_image_of = None
        self.num_particles = None
        self.coords = None
        self.particle_contributing = None
        self.species_code = None
        self.need_neigh = None
        self.last_update_positions = None

    def update_kim_coords(self, atoms):
        """Update atomic positions in self.coords, which is where the KIM
        API will look to find them in order to pass them to the model.
        """
        if self.padding_image_of.size != 0:
            disp_contrib = atoms.positions - self.coords[: len(atoms)]
            disp_pad = disp_contrib[self.padding_image_of]
            self.coords += np.concatenate((disp_contrib, disp_pad))
        else:
            np.copyto(self.coords, atoms.positions)

        if self.debug:
            print("Debug: called update_kim_coords")
            print()

    def need_neigh_update(self, atoms, system_changes):
        need_neigh_update = True
        if len(system_changes) == 1 and "positions" in system_changes:
            # Only position changes
            if self.last_update_positions is not None:
                a = self.last_update_positions
                b = atoms.positions
                if a.shape == b.shape:
                    delta = np.linalg.norm(a - b, axis=1)
                    # Indices of the two largest elements
                    ind = np.argpartition(delta, -2)[-2:]
                    if sum(delta[ind]) <= self.skin:
                        need_neigh_update = False

        return need_neigh_update

    def clean(self):
        pass


class ASENeighborList(NeighborList):
    def __init__(
        self,
        compute_args,
        neigh_skin_ratio,
        model_influence_dist,
        model_cutoffs,
        padding_not_require_neigh,
        debug,
    ):
        super().__init__(
            neigh_skin_ratio,
            model_influence_dist,
            model_cutoffs,
            padding_not_require_neigh,
            debug,
        )

        self.neigh = {}
        compute_args.set_callback(
            kimpy.compute_callback_name.GetNeighborList,
            self.get_neigh,
            self.neigh)

    @staticmethod
    def get_neigh(data, cutoffs, neighbor_list_index, particle_number):
        """Retrieves the neighbors of each atom using ASE's native neighbor
        list library
        """
        # We can only return neighbors of particles that were stored
        number_of_particles = data["num_particles"]
        if particle_number >= number_of_particles or particle_number < 0:
            return (np.array([]), 1)

        neighbors = data["neighbors"][neighbor_list_index][particle_number]
        return (neighbors, 0)

    def build(self, orig_atoms):
        """Build the ASE neighbor list and return an Atoms object with
        all of the neighbors added.  First a neighbor list is created
        from ase.neighbor_list, having only information about the
        neighbors of the original atoms.  If neighbors of padding atoms
        are required, they are calculated using information from the
        first neighbor list.
        """
        syms = orig_atoms.get_chemical_symbols()
        orig_num_atoms = len(orig_atoms)
        orig_pos = orig_atoms.get_positions()

        # New atoms object that will contain the contributing atoms plus
        # the padding atoms
        new_atoms = orig_atoms.copy()

        neigh_list = defaultdict(list)
        neigh_dists = defaultdict(list)

        # Information for padding atoms
        padding_image_of = []
        padding_shifts = []

        # Ask ASE to build the neighbor list using the influence distance.
        # This is not a neighbor list for each atom, but rather a listing
        # of all neighbor pairs that exist.  Atoms with no neighbors will
        # not show up.
        (neigh_indices_i,
         neigh_indices_j,
         relative_pos,
         neigh_cell_offsets,
         dists) = neighbor_list(
            "ijDSd", orig_atoms, self.influence_dist
        )

        # Loop over all neighbor pairs. Because this loop will generally
        # include image atoms (for periodic systems), we keep track of
        # which atoms/images we've accounted for in the `used` dictionary.
        used = dict()
        for neigh_i, neigh_j, rel_pos, offset, dist in zip(neigh_indices_i,
                                                           neigh_indices_j,
                                                           relative_pos,
                                                           neigh_cell_offsets,
                                                           dists):
            # Get neighbor position of neighbor
            # (mapped back into unit cell, so this may overlap with other atoms)
            wrapped_pos = orig_pos[neigh_i] + rel_pos

            shift = tuple(offset)
            uniq_index = (neigh_j,) + shift
            if shift == (0, 0, 0):
                # This atom is in the unit cell, i.e. it is contributing
                neigh_list[neigh_i].append(neigh_j)
                neigh_dists[neigh_i].append(dist)
                if uniq_index not in used:
                    used[uniq_index] = neigh_j
            else:
                # This atom is not in the unit cell, i.e. it is padding
                if uniq_index not in used:
                    # Add the neighbor as a padding atom
                    used[uniq_index] = len(new_atoms)
                    new_atoms.append(Atom(syms[neigh_j], position=wrapped_pos))
                    padding_image_of.append(neigh_j)
                    padding_shifts.append(offset)
                neigh_list[neigh_i].append(used[uniq_index])
                neigh_dists[neigh_i].append(dist)
        neighbor_list_size = orig_num_atoms

        # Add neighbors of padding atoms if the potential requires them
        if self.padding_need_neigh:
            neighbor_list_size = len(new_atoms)
            inv_used = dict((v, k) for k, v in used.items())
            # Loop over all the neighbors (k) and the image of that neighbor
            # in the cell (neigh)
            for k, neigh in enumerate(padding_image_of):
                # Shift from original atom in cell to neighbor
                shift = padding_shifts[k]
                for orig_neigh, orig_dist in zip(neigh_list[neigh],
                                                 neigh_dists[neigh]):
                    # Get the shift of the neighbor of the original atom
                    orig_shift = inv_used[orig_neigh][1:]

                    # Apply sum of original shift and current shift to
                    # neighbors of original atom
                    total_shift = orig_shift + shift

                    # Get the image in the cell of the original neighbor
                    if orig_neigh <= orig_num_atoms - 1:
                        orig_neigh_image = orig_neigh
                    else:
                        orig_neigh_image = padding_image_of[orig_neigh -
                                                            orig_num_atoms]

                    # If the original image with the total shift has been
                    # used before then it is also a neighbor of this atom
                    uniq_index = (orig_neigh_image,) + tuple(total_shift)
                    if uniq_index in used:
                        neigh_list[k + orig_num_atoms].append(used[uniq_index])
                        neigh_dists[k + orig_num_atoms].append(orig_dist)

        # If the model has multiple cutoffs, we need to return neighbor lists
        # corresponding to each of them
        neigh_lists = []
        for cut in self.cutoffs:
            neigh_list = [
                np.array(neigh_list[k], dtype=np.intc)[neigh_dists[k] <= cut]
                for k in range(neighbor_list_size)
            ]
            neigh_lists.append(neigh_list)

        self.padding_image_of = padding_image_of

        self.neigh["neighbors"] = neigh_lists
        self.neigh["num_particles"] = neighbor_list_size

        return new_atoms

    def update(self, orig_atoms, species_map):
        """Create the neighbor list along with the other required
        parameters (which are stored as instance attributes). The
        required parameters are:

            - num_particles
            - coords
            - particle_contributing
            - species_code

        Note that the KIM API requires a neighbor list that has indices
        corresponding to each atom.
        """

        # Information of original atoms
        self.num_contributing_particles = len(orig_atoms)

        new_atoms = self.build(orig_atoms)

        # Save the number of atoms and all their neighbors and positions
        num_atoms = len(new_atoms)
        num_padding = num_atoms - self.num_contributing_particles
        self.num_particles = [num_atoms]
        self.coords = new_atoms.get_positions()

        # Save which coordinates are from original atoms and which are from
        # neighbors using a mask
        indices_mask = [1] * self.num_contributing_particles + [0] * num_padding
        self.particle_contributing = indices_mask

        # Species support and code
        try:
            self.species_code = [
                species_map[s] for s in new_atoms.get_chemical_symbols()
            ]
        except KeyError as e:
            raise RuntimeError("Species not supported by KIM model; {}"
                               .format(str(e)))

        self.last_update_positions = orig_atoms.get_positions()

        if self.debug:
            print("Debug: called update_ase_neigh")
            print()


class KimpyNeighborList(NeighborList):
    def __init__(
        self,
        compute_args,
        neigh_skin_ratio,
        model_influence_dist,
        model_cutoffs,
        padding_not_require_neigh,
        debug,
    ):
        super().__init__(
            neigh_skin_ratio,
            model_influence_dist,
            model_cutoffs,
            padding_not_require_neigh,
            debug,
        )

        self.neigh = neighlist.initialize()
        compute_args.set_callback_pointer(
            kimpy.compute_callback_name.GetNeighborList,
            neighlist.get_neigh_kim(),
            self.neigh,
        )

    @check_call_wrapper
    def build(self):
        return neighlist.build(
            self.neigh, self.coords, self.influence_dist,
            self.cutoffs, self.need_neigh
        )

    @check_call_wrapper
    def create_paddings(
        self, cell, pbc, contributing_coords, contributing_species_code
    ):
        # Cast things passed through kimpy to numpy arrays
        cell = np.asarray(cell, dtype=np.double)
        pbc = np.asarray(pbc, dtype=np.intc)
        contributing_coords = np.asarray(contributing_coords, dtype=np.double)

        return neighlist.create_paddings(
            self.influence_dist,
            cell,
            pbc,
            contributing_coords,
            contributing_species_code,
        )

    def update(self, atoms, species_map):
        """Create the neighbor list along with the other required
        parameters (which are stored as instance attributes). The
        required parameters are:

            - num_particles
            - coords
            - particle_contributing
            - species_code

        Note that the KIM API requires a neighbor list that has indices
        corresponding to each atom.
        """

        # Get info from Atoms object
        cell = np.asarray(atoms.get_cell(), dtype=np.double)
        pbc = np.asarray(atoms.get_pbc(), dtype=np.intc)
        contributing_coords = np.asarray(atoms.get_positions(), dtype=np.double)
        self.num_contributing_particles = atoms.get_global_number_of_atoms()
        num_contributing = self.num_contributing_particles

        # Species support and code
        try:
            contributing_species_code = np.array(
                [species_map[s] for s in atoms.get_chemical_symbols()],
                dtype=np.intc)
        except KeyError as e:
            raise RuntimeError("Species not supported by KIM model; {}"
                               .format(str(e)))

        if pbc.any():  # Need padding atoms
            # Create padding atoms

            padding_coords, padding_species_code, self.padding_image_of = \
                self.create_paddings(
                    cell, pbc, contributing_coords, contributing_species_code)
            num_padding = padding_species_code.size

            self.num_particles = [num_contributing + num_padding]
            self.coords = np.concatenate((contributing_coords, padding_coords))
            self.species_code = np.concatenate(
                (contributing_species_code, padding_species_code)
            )
            self.particle_contributing = ([1] * num_contributing +
                                          [0] * num_padding)
            self.need_neigh = [1] * self.num_particles[0]
            if not self.padding_need_neigh:
                self.need_neigh[num_contributing:] = 0

        else:  # Do not need padding atoms
            self.padding_image_of = []
            self.num_particles = [num_contributing]
            self.coords = contributing_coords
            self.species_code = contributing_species_code
            self.particle_contributing = [1] * num_contributing
            self.need_neigh = self.particle_contributing

        # Create neighborlist
        self.build()

        self.last_update_positions = atoms.get_positions()

        if self.debug:
            print("Debug: called update_kimpy_neigh")
            print()

    def clean(self):
        neighlist.clean(self.neigh)