1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
|
"""
The ASE Calculator for OpenMX <http://www.openmx-square.org>: Python interface
to the software package for nano-scale material simulations based on density
functional theories.
Copyright (C) 2017 Charles Thomas Johnson, JaeHwan Shim and JaeJun Yu
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with ASE. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
import os
import subprocess
import warnings
from ase.calculators.openmx.reader import rn as read_nth_to_last_value
def input_command(calc, executable_name, input_files, argument_format='%s'):
input_files = tuple(input_files)
command = executable_name + ' ' + argument_format % input_files
subprocess.check_call(command, shell=True, cwd=calc.directory)
class DOS:
def __init__(self, calc):
self.calc = calc
self.dos_dict = {}
def read_dos(self, method='Tetrahedron', pdos=False, atom_index=1,
orbital='', spin_polarization=False):
"""
function for reading DOS from the following OpenMX file extensions:
~.[DOS|PDOS].[Tetrahedron|Gaussian]<.atom(int).(orbital)
:param method: the method which has been used to calculate the density
of states ('Tetrahedron' or 'Gaussian')
:param pdos: True if the pseudo-density of states have been calculated,
False if only the total density of states has been
calculated
:param atom_index: positive integer, n. For the nth atom in the unit
cell as specified in the OpenMX input file
:param orbital: '' or 's1' or 'p1', 'p2', 'p3' or 'd1', 'd2', 'd3',
'd4', 'd5' etc. If pdos is True then this specifies the
pdos from a particular orbital to read from. If '' is
given then the total pdos from the given atom is read.
:param spin_polarization: if True this will read the separate pdos for
up and down spin states.
:return: None
"""
add = False
if not spin_polarization and self.calc['initial_magnetic_moments']:
add = True
p = ''
if pdos:
p = 'P'
filename = self.calc.label + '.' + p + 'DOS.' + method
if pdos:
period = ''
if orbital != '':
period = '.'
filename += '.atom' + str(atom_index) + period + orbital
with open(filename, 'r') as fd:
line = '\n'
number_of_lines = -1
while line != '':
line = fd.readline()
number_of_lines += 1
key = ''
atom_and_orbital = ''
if pdos:
key = 'p'
atom_and_orbital = str(atom_index) + orbital
key += 'dos'
self.dos_dict[key + '_energies_' + atom_and_orbital] = np.ndarray(
number_of_lines)
if spin_polarization:
self.dos_dict[key + atom_and_orbital + 'up'] = \
np.ndarray(number_of_lines)
self.dos_dict[key + atom_and_orbital + 'down'] = \
np.ndarray(number_of_lines)
self.dos_dict[key + '_cum_' + atom_and_orbital + 'up'] = \
np.ndarray(number_of_lines)
self.dos_dict[key + '_cum_' + atom_and_orbital + 'down'] = \
np.ndarray(number_of_lines)
else:
self.dos_dict[key + atom_and_orbital] = np.ndarray(number_of_lines)
self.dos_dict[key + '_cum_' + atom_and_orbital] = \
np.ndarray(number_of_lines)
f = open(filename, 'r')
if spin_polarization:
for i in range(number_of_lines):
line = f.readline()
self.dos_dict[key + '_energies_' + atom_and_orbital][i] = \
read_nth_to_last_value(line, 5)
self.dos_dict[key + atom_and_orbital + 'up'][i] = \
read_nth_to_last_value(line, 4)
self.dos_dict[key + atom_and_orbital + 'down'][i] = \
-float(read_nth_to_last_value(line, 3))
self.dos_dict[key + '_cum_' + atom_and_orbital + 'up'][i] = \
read_nth_to_last_value(line, 2)
self.dos_dict[key + '_cum_' + atom_and_orbital + 'down'][i] = \
read_nth_to_last_value(line)
elif add:
for i in range(number_of_lines):
line = f.readline()
self.dos_dict[key + '_energies_' + atom_and_orbital][i] = \
read_nth_to_last_value(line, 5)
self.dos_dict[key + atom_and_orbital][i] = \
float(read_nth_to_last_value(line, 4)) - \
float(read_nth_to_last_value(line, 3))
self.dos_dict[key + '_cum_' + atom_and_orbital][i] = \
float(read_nth_to_last_value(line, 2)) + \
float(read_nth_to_last_value(line))
else:
for i in range(number_of_lines):
line = f.readline()
self.dos_dict[key + '_energies_' + atom_and_orbital][i] = \
read_nth_to_last_value(line, 3)
self.dos_dict[key + atom_and_orbital][i] = \
read_nth_to_last_value(line, 2)
self.dos_dict[key + '_cum_' + atom_and_orbital][i] = \
read_nth_to_last_value(line)
f.close()
def subplot_dos(self, axis, density=True, cum=False, pdos=False,
atom_index=1, orbital='', spin='',
erange=(-25, 20), fermi_level=True):
"""
Plots a graph of (pseudo-)density of states against energy onto a given
axis of a subplot.
:param axis: matplotlib.pyplot.Axes object. This allows the graph to
plotted on any desired axis of a plot.
:param density: If True, the density of states will be plotted
:param cum: If True, the cumulative (or integrated) density of states
will be plotted
:param pdos: If True, the pseudo-density of states will be plotted for
a given atom and orbital
:param atom_index: If pdos is True, atom_index specifies which atom's
PDOS to plot.
:param orbital: If pdos is True, orbital specifies which orbital's PDOS
to plot.
:param spin: If '', density of states for both spin states will be
combined into one plot. If 'up' or 'down', a given spin
state's PDOS will be plotted.
:return: None
"""
p = ''
bottom_index = 0
atom_orbital = atom_orbital_spin = ''
if pdos:
p = 'p'
atom_orbital += str(atom_index) + orbital
atom_orbital_spin += atom_orbital + spin
key = p + 'dos'
density_color = 'r'
cum_color = 'b'
if spin == 'down':
density_color = 'c'
cum_color = 'm'
if density and cum:
axis_twin = axis.twinx()
axis.plot(self.dos_dict[key + '_energies_' + atom_orbital],
self.dos_dict[key + atom_orbital_spin],
density_color)
axis_twin.plot(self.dos_dict[key + '_energies_' + atom_orbital],
self.dos_dict[key + '_cum_' + atom_orbital_spin],
cum_color)
max_density = max(self.dos_dict[key + atom_orbital_spin])
max_cum = max(self.dos_dict[key + '_cum_' + atom_orbital_spin])
if not max_density:
max_density = 1.
if not max_cum:
max_cum = 1
axis.set_ylim(ymax=max_density)
axis_twin.set_ylim(ymax=max_cum)
axis.set_ylim(ymin=0.)
axis_twin.set_ylim(ymin=0.)
label_index = 0
yticklabels = axis.get_yticklabels()
if spin == 'down':
bottom_index = len(yticklabels) - 1
for t in yticklabels:
if label_index == bottom_index or label_index == \
len(yticklabels) // 2:
t.set_color(density_color)
else:
t.set_visible(False)
label_index += 1
label_index = 0
yticklabels = axis_twin.get_yticklabels()
if spin == 'down':
bottom_index = len(yticklabels) - 1
for t in yticklabels:
if label_index == bottom_index or label_index == \
len(yticklabels) // 2:
t.set_color(cum_color)
else:
t.set_visible(False)
label_index += 1
if spin == 'down':
axis.set_ylim(axis.get_ylim()[::-1])
axis_twin.set_ylim(axis_twin.get_ylim()[::-1])
else:
color = density_color
if cum:
color = cum_color
key += '_cum_'
key += atom_orbital_spin
axis.plot(self.dos_dict[p + 'dos_energies_' + atom_orbital],
self.dos_dict[key], color)
maximum = max(self.dos_dict[key])
if not maximum:
maximum = 1.
axis.set_ylim(ymax=maximum)
axis.set_ylim(ymin=0.)
label_index = 0
yticklabels = axis.get_yticklabels()
if spin == 'down':
bottom_index = len(yticklabels) - 1
for t in yticklabels:
if label_index == bottom_index or label_index == \
len(yticklabels) // 2:
t.set_color(color)
else:
t.set_visible(False)
label_index += 1
if spin == 'down':
axis.set_ylim(axis.get_ylim()[::-1])
if fermi_level:
axis.axvspan(erange[0], 0., color='y', alpha=0.5)
def plot_dos(self, density=True, cum=False, pdos=False, orbital_list=None,
atom_index_list=None, spins=('up', 'down'), fermi_level=True,
spin_polarization=False, erange=(-25, 20), atoms=None,
method='Tetrahedron', file_format=None):
"""
Generates a graphical figure containing possible subplots of different
PDOSs of different atoms, orbitals and spin state combinations.
:param density: If True, density of states will be plotted
:param cum: If True, cumulative density of states will be plotted
:param pdos: If True, pseudo-density of states will be plotted for
given atoms and orbitals
:param atom_index_list: If pdos is True, atom_index_list specifies
which atoms will have their PDOS plotted.
:param orbital_list: If pdos is True, orbital_list specifies which
orbitals will have their PDOS plotted.
:param spins: If '' in spins, density of states for both spin states
will be combined into one graph. If 'up' or
'down' in spins, a given spin state's PDOS graph will be plotted.
:param spin_polarization: If spin_polarization is False then spin
states will not be separated in different
PDOS's.
:param erange: range of energies to view DOS
:return: matplotlib.figure.Figure and matplotlib.axes.Axes object
"""
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
if not spin_polarization:
spins = ['']
number_of_spins = len(spins)
if orbital_list is None:
orbital_list = ['']
number_of_atoms = 1
number_of_orbitals = 1
p = ''
if pdos:
p = 'P'
if atom_index_list is None:
atom_index_list = [i + 1 for i in range(len(atoms))]
number_of_atoms = len(atom_index_list)
number_of_orbitals = len(orbital_list)
figure, axes = plt.subplots(number_of_orbitals * number_of_spins,
number_of_atoms, sharex=True, sharey=False,
squeeze=False)
for i in range(number_of_orbitals):
for s in range(number_of_spins):
row_index = i * number_of_spins + s
for j in range(number_of_atoms):
self.subplot_dos(fermi_level=fermi_level, density=density,
axis=axes[row_index][j], erange=erange,
atom_index=atom_index_list[j], pdos=pdos,
orbital=orbital_list[i], spin=spins[s],
cum=cum)
if j == 0 and pdos:
orbital = orbital_list[i]
if orbital == '':
orbital = 'All'
if spins[s]:
orbital += ' ' + spins[s]
axes[row_index][j].set_ylabel(orbital)
if row_index == 0 and pdos:
atom_symbol = ''
if atoms:
atom_symbol = ' (' + \
atoms[atom_index_list[j]].symbol + ')'
axes[row_index][j].set_title(
'Atom ' + str(atom_index_list[j]) + atom_symbol)
if row_index == number_of_orbitals * number_of_spins - 1:
axes[row_index][j].set_xlabel(
'Energy above Fermi Level (eV)')
plt.xlim(xmin=erange[0], xmax=erange[1])
if density and cum:
figure.suptitle(self.calc.label)
xdata = (0., 1.)
ydata = (0., 0.)
key_tuple = (Line2D(color='r', xdata=xdata, ydata=ydata),
Line2D(color='b', xdata=xdata, ydata=ydata))
if spin_polarization:
key_tuple = (Line2D(color='r', xdata=xdata, ydata=ydata),
Line2D(color='b', xdata=xdata, ydata=ydata),
Line2D(color='c', xdata=xdata, ydata=ydata),
Line2D(color='m', xdata=xdata, ydata=ydata))
title_tuple = (p + 'DOS (eV^-1)', 'Number of States per Unit Cell')
if spin_polarization:
title_tuple = (p + 'DOS (eV^-1), spin up',
'Number of States per Unit Cell, spin up',
p + 'DOS (eV^-1), spin down',
'Number of States per Unit Cell, spin down')
figure.legend(key_tuple, title_tuple, 'lower center')
elif density:
figure.suptitle(self.calc.prefix + ': ' + p + 'DOS (eV^-1)')
elif cum:
figure.suptitle(self.calc.prefix + ': Number of States')
extra_margin = 0
if density and cum and spin_polarization:
extra_margin = 0.1
plt.subplots_adjust(hspace=0., bottom=0.2 + extra_margin, wspace=0.29,
left=0.09, right=0.95)
if file_format:
orbitals = ''
if pdos:
atom_index_list = map(str, atom_index_list)
atoms = '&'.join(atom_index_list)
if '' in orbital_list:
all_index = orbital_list.index('')
orbital_list.remove('')
orbital_list.insert(all_index, 'all')
orbitals = ''.join(orbital_list)
plt.savefig(filename=self.calc.label + '.' + p + 'DOS.' +
method + '.atoms' + atoms + '.' + orbitals + '.' +
file_format)
if not file_format:
plt.show()
return figure, axes
def calc_dos(self, method='Tetrahedron', pdos=False, gaussian_width=0.1,
atom_index_list=None):
"""
Python interface for DosMain (OpenMX's density of states calculator).
Can automate the density of states
calculations used in OpenMX by processing .Dos.val and .Dos.vec files.
:param method: method to be used to calculate the density of states
from eigenvalues and eigenvectors.
('Tetrahedron' or 'Gaussian')
:param pdos: If True, the pseudo-density of states is calculated for a
given list of atoms for each orbital. If the system is
spin polarized, then each up and down state is also
calculated.
:param gaussian_width: If the method is 'Gaussian' then gaussian_width
is required (eV).
:param atom_index_list: If pdos is True, a list of atom indices are
required to generate the pdos of each of those
specified atoms.
:return: None
"""
method_code = '2\n'
if method == 'Tetrahedron':
method_code = '1\n'
pdos_code = '1\n'
if pdos:
pdos_code = '2\n'
with open(os.path.join(self.calc.directory, 'std_dos.in'), 'w') as f:
f.write(method_code)
if method == 'Gaussian':
f.write(str(gaussian_width) + '\n')
f.write(pdos_code)
if pdos:
atoms_code = ''
if atom_index_list is None:
for i in range(len(self.calc.atoms)):
atoms_code += str(i + 1) + ' '
else:
for i in atom_index_list:
atoms_code += str(i) + ' '
atoms_code += '\n'
f.write(atoms_code)
f.close()
executable_name = 'DosMain'
input_files = (self.calc.label + '.Dos.val', self.calc.label +
'.Dos.vec', os.path.join(self.calc.directory,
'std_dos.in'))
argument_format = '%s %s < %s'
input_command(self.calc, executable_name, input_files, argument_format)
def get_dos(self, atom_index_list=None, method='Tetrahedron',
gaussian_width=0.1, pdos=False, orbital_list=None,
spin_polarization=None, density=True, cum=False,
erange=(-25, 20), file_format=None, atoms=None,
fermi_level=True):
"""
Wraps all the density of states processing functions. Can go from
.Dos.val and .Dos.vec files to a graphical figure showing many
different PDOS plots against energy in one step.
:param atom_index_list:
:param method: method to be used to calculate the density of states
from eigenvalues and eigenvectors.
('Tetrahedron' or 'Gaussian')
:param gaussian_width: If the method is 'Gaussian' then gaussian_width
is required (eV).
:param pdos: If True, the pseudo-density of states is calculated for a
given list of atoms for each orbital. If the system is
spin polarized, then each up and down state is also
calculated.
:param orbital_list: If pdos is True, a list of atom indices are
required to generate the pdos of each of those
specified atoms.
:param spin_polarization: If spin_polarization is False then spin
states will not be separated in different
PDOS's.
:param density: If True, density of states will be plotted
:param cum: If True, cumulative (or integrated) density of states will
be plotted
:param erange: range of energies to view the DOS
:param file_format: If not None, a file will be saved automatically in
that format ('pdf', 'png', 'jpeg' etc.)
:return: matplotlib.figure.Figure object
"""
if spin_polarization is None:
spin_polarization = bool(self.calc['initial_magnetic_moments'])
if spin_polarization and not self.calc['initial_magnetic_moments']:
warnings.warn('No spin polarization calculations provided')
spin_polarization = False
if atom_index_list is None:
atom_index_list = [1]
if method == 'Tetrahedron' and self.calc['dos_kgrid'] == (1, 1, 1):
raise ValueError('Not enough k-space grid points.')
self.calc_dos(atom_index_list=atom_index_list, pdos=pdos,
method=method, gaussian_width=gaussian_width)
if pdos:
if orbital_list is None:
orbital_list = ['']
orbital_list = list(orbital_list)
if 's' in orbital_list:
s_index = orbital_list.index('s')
orbital_list.remove('s')
orbital_list.insert(s_index, 's1')
if 'p' in orbital_list:
p_index = orbital_list.index('p')
orbital_list.remove('p')
orbital_list.insert(p_index, 'p3')
orbital_list.insert(p_index, 'p2')
orbital_list.insert(p_index, 'p1')
if 'd' in orbital_list:
d_index = orbital_list.index('d')
orbital_list.remove('d')
orbital_list.insert(d_index, 'd5')
orbital_list.insert(d_index, 'd4')
orbital_list.insert(d_index, 'd3')
orbital_list.insert(d_index, 'd2')
orbital_list.insert(d_index, 'd1')
if 'f' in orbital_list:
f_index = orbital_list.index('f')
orbital_list.remove('f')
orbital_list.insert(f_index, 'f7')
orbital_list.insert(f_index, 'f6')
orbital_list.insert(f_index, 'f5')
orbital_list.insert(f_index, 'f4')
orbital_list.insert(f_index, 'f3')
orbital_list.insert(f_index, 'f2')
orbital_list.insert(f_index, 'f1')
for atom_index in atom_index_list:
for orbital in orbital_list:
self.read_dos(method=method, atom_index=atom_index,
pdos=pdos, orbital=orbital,
spin_polarization=spin_polarization)
else:
self.read_dos(method=method, spin_polarization=spin_polarization)
return self.plot_dos(density=density, cum=cum, atoms=atoms,
atom_index_list=atom_index_list, pdos=pdos,
orbital_list=orbital_list, erange=erange,
spin_polarization=spin_polarization,
file_format=file_format, method=method,
fermi_level=fermi_level)
|