1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
|
# flake8: noqa
"""
The ASE Calculator for OpenMX <http://www.openmx-square.org>: Python interface
to the software package for nano-scale material simulations based on density
functional theories.
Copyright (C) 2018 JaeHwan Shim and JaeJun Yu
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with ASE. If not, see <http://www.gnu.org/licenses/>.
"""
# from ase.calculators import SinglePointDFTCalculator
import os
import struct
import numpy as np
from ase.units import Ha, Bohr, Debye
def read_openmx(filename=None, debug=False):
from ase.calculators.openmx import OpenMX
from ase import Atoms
"""
Read results from typical OpenMX output files and returns the atom object
In default mode, it reads every implementd properties we could get from
the files. Unlike previous version, we read the information based on file.
previous results will be eraised unless previous results are written in the
next calculation results.
Read the 'LABEL.log' file seems redundant. Because all the
information should already be written in '.out' file. However, in the
version 3.8.3, stress tensor are not written in the '.out' file. It only
contained in the '.log' file. So... I implented reading '.log' file method
"""
log_data = read_file(get_file_name('.log', filename), debug=debug)
restart_data = read_file(get_file_name('.dat#', filename), debug=debug)
dat_data = read_file(get_file_name('.dat', filename), debug=debug)
out_data = read_file(get_file_name('.out', filename), debug=debug)
scfout_data = read_scfout_file(get_file_name('.scfout', filename))
band_data = read_band_file(get_file_name('.Band', filename))
# dos_data = read_dos_file(get_file_name('.Dos.val', filename))
"""
First, we get every data we could get from the all results files. And then,
reform the data to fit to data structure of Atom object. While doing this,
Fix the unit to ASE format.
"""
parameters = get_parameters(out_data=out_data, log_data=log_data,
restart_data=restart_data, dat_data=dat_data,
scfout_data=scfout_data, band_data=band_data)
atomic_formula = get_atomic_formula(out_data=out_data, log_data=log_data,
restart_data=restart_data,
scfout_data=scfout_data,
dat_data=dat_data)
results = get_results(out_data=out_data, log_data=log_data,
restart_data=restart_data, scfout_data=scfout_data,
dat_data=dat_data, band_data=band_data)
atoms = Atoms(**atomic_formula)
atoms.calc = OpenMX(**parameters)
atoms.calc.results = results
return atoms
def read_file(filename, debug=False):
"""
Read the 'LABEL.out' file. Using 'parameters.py', we read every 'allowed_
dat' dictionory. while reading a file, if one find the key matcheds That
'patters', which indicates the property we want is written, it will returns
the pair value of that key. For example,
example will be written later
"""
from ase.calculators.openmx import parameters as param
if not os.path.isfile(filename):
return {}
param_keys = ['integer_keys', 'float_keys', 'string_keys', 'bool_keys',
'list_int_keys', 'list_float_keys', 'list_bool_keys',
'tuple_integer_keys', 'tuple_float_keys', 'tuple_float_keys']
patterns = {
'Stress tensor': ('stress', read_stress_tensor),
'Dipole moment': ('dipole', read_dipole),
'Fractional coordinates of': ('scaled_positions', read_scaled_positions),
'Utot.': ('energy', read_energy),
'energies in': ('energies', read_energies),
'Chemical Potential': ('chemical_potential', read_chemical_potential),
'<coordinates.forces': ('forces', read_forces),
'Eigenvalues': ('eigenvalues', read_eigenvalues)}
special_patterns = {
'Total spin moment': (('magmoms', 'total_magmom'),
read_magmoms_and_total_magmom),
}
out_data = {}
line = '\n'
if(debug):
print('Read results from %s' % filename)
with open(filename, 'r') as f:
'''
Read output file line by line. When the `line` matches the pattern
of certain keywords in `param.[dtype]_keys`, for example,
if line in param.string_keys:
out_data[key] = read_string(line)
parse that line and store it to `out_data` in specified data type.
To cover all `dtype` parameters, for loop was used,
for [dtype] in parameters_keys:
if line in param.[dtype]_keys:
out_data[key] = read_[dtype](line)
After found matched pattern, escape the for loop using `continue`.
'''
while line != '':
pattern_matched = False
line = f.readline()
try:
_line = line.split()[0]
except IndexError:
continue
for dtype_key in param_keys:
dtype = dtype_key.rsplit('_', 1)[0]
read_dtype = globals()['read_' + dtype]
for key in param.__dict__[dtype_key]:
if key in _line:
out_data[get_standard_key(key)] = read_dtype(line)
pattern_matched = True
continue
if pattern_matched:
continue
for key in param.matrix_keys:
if '<'+key in line:
out_data[get_standard_key(key)] = read_matrix(line, key, f)
pattern_matched = True
continue
if pattern_matched:
continue
for key in patterns.keys():
if key in line:
out_data[patterns[key][0]] = patterns[key][1](line, f, debug=debug)
pattern_matched = True
continue
if pattern_matched:
continue
for key in special_patterns.keys():
if key in line:
a, b = special_patterns[key][1](line, f)
out_data[special_patterns[key][0][0]] = a
out_data[special_patterns[key][0][1]] = b
pattern_matched = True
continue
if pattern_matched:
continue
return out_data
def read_scfout_file(filename=None):
"""
Read the Developer output '.scfout' files. It Behaves like read_scfout.c,
OpenMX module, but written in python. Note that some array are begin with
1, not 0
atomnum: the number of total atoms
Catomnum: the number of atoms in the central region
Latomnum: the number of atoms in the left lead
Ratomnum: the number of atoms in the left lead
SpinP_switch:
0: non-spin polarized
1: spin polarized
TCpyCell: the total number of periodic cells
Solver: method for solving eigenvalue problem
ChemP: chemical potential
Valence_Electrons: total number of valence electrons
Total_SpinS: total value of Spin (2*Total_SpinS = muB)
E_Temp: electronic temperature
Total_NumOrbs: the number of atomic orbitals in each atom
size: Total_NumOrbs[atomnum+1]
FNAN: the number of first neighboring atoms of each atom
size: FNAN[atomnum+1]
natn: global index of neighboring atoms of an atom ct_AN
size: natn[atomnum+1][FNAN[ct_AN]+1]
ncn: global index for cell of neighboring atoms of an atom ct_AN
size: ncn[atomnum+1][FNAN[ct_AN]+1]
atv: x,y,and z-components of translation vector of periodically copied cell
size: atv[TCpyCell+1][4]:
atv_ijk: i,j,and j number of periodically copied cells
size: atv_ijk[TCpyCell+1][4]:
tv[4][4]: unit cell vectors in Bohr
rtv[4][4]: reciprocal unit cell vectors in Bohr^{-1}
note:
tv_i dot rtv_j = 2PI * Kronecker's delta_{ij}
Gxyz[atomnum+1][60]: atomic coordinates in Bohr
Hks: Kohn-Sham matrix elements of basis orbitals
size: Hks[SpinP_switch+1]
[atomnum+1]
[FNAN[ct_AN]+1]
[Total_NumOrbs[ct_AN]]
[Total_NumOrbs[h_AN]]
iHks:
imaginary Kohn-Sham matrix elements of basis orbitals
for alpha-alpha, beta-beta, and alpha-beta spin matrices
of which contributions come from spin-orbit coupling
and Hubbard U effective potential.
size: iHks[3]
[atomnum+1]
[FNAN[ct_AN]+1]
[Total_NumOrbs[ct_AN]]
[Total_NumOrbs[h_AN]]
OLP: overlap matrix
size: OLP[atomnum+1]
[FNAN[ct_AN]+1]
[Total_NumOrbs[ct_AN]]
[Total_NumOrbs[h_AN]]
OLPpox: overlap matrix with position operator x
size: OLPpox[atomnum+1]
[FNAN[ct_AN]+1]
[Total_NumOrbs[ct_AN]]
[Total_NumOrbs[h_AN]]
OLPpoy: overlap matrix with position operator y
size: OLPpoy[atomnum+1]
[FNAN[ct_AN]+1]
[Total_NumOrbs[ct_AN]]
[Total_NumOrbs[h_AN]]
OLPpoz: overlap matrix with position operator z
size: OLPpoz[atomnum+1]
[FNAN[ct_AN]+1]
[Total_NumOrbs[ct_AN]]
[Total_NumOrbs[h_AN]]
DM: overlap matrix
size: DM[SpinP_switch+1]
[atomnum+1]
[FNAN[ct_AN]+1]
[Total_NumOrbs[ct_AN]]
[Total_NumOrbs[h_AN]]
dipole_moment_core[4]:
dipole_moment_background[4]:
"""
from numpy import insert as ins
from numpy import cumsum as cum
from numpy import split as spl
from numpy import sum, zeros
if not os.path.isfile(filename):
return {}
def easyReader(byte, data_type, shape):
data_size = {'d': 8, 'i': 4}
data_struct = {'d': float, 'i': int}
dt = data_type
ds = data_size[data_type]
unpack = struct.unpack
if len(byte) == ds:
if dt == 'i':
return data_struct[dt].from_bytes(byte, byteorder='little')
elif dt == 'd':
return np.array(unpack(dt*(len(byte)//ds), byte))[0]
elif shape is not None:
return np.array(unpack(dt*(len(byte)//ds), byte)).reshape(shape)
else:
return np.array(unpack(dt*(len(byte)//ds), byte))
def inte(byte, shape=None):
return easyReader(byte, 'i', shape)
def floa(byte, shape=None):
return easyReader(byte, 'd', shape)
def readOverlap(atomnum, Total_NumOrbs, FNAN, natn, f):
myOLP = []
myOLP.append([])
for ct_AN in range(1, atomnum + 1):
myOLP.append([])
TNO1 = Total_NumOrbs[ct_AN]
for h_AN in range(FNAN[ct_AN] + 1):
myOLP[ct_AN].append([])
Gh_AN = natn[ct_AN][h_AN]
TNO2 = Total_NumOrbs[Gh_AN]
for i in range(TNO1):
myOLP[ct_AN][h_AN].append(floa(f.read(8*TNO2)))
return myOLP
def readHam(SpinP_switch, FNAN, atomnum, Total_NumOrbs, natn, f):
Hks = []
for spin in range(SpinP_switch + 1):
Hks.append([])
Hks[spin].append([np.zeros(FNAN[0] + 1)])
for ct_AN in range(1, atomnum + 1):
Hks[spin].append([])
TNO1 = Total_NumOrbs[ct_AN]
for h_AN in range(FNAN[ct_AN] + 1):
Hks[spin][ct_AN].append([])
Gh_AN = natn[ct_AN][h_AN]
TNO2 = Total_NumOrbs[Gh_AN]
for i in range(TNO1):
Hks[spin][ct_AN][h_AN].append(floa(f.read(8*TNO2)))
return Hks
f = open(filename, mode='rb')
atomnum, SpinP_switch = inte(f.read(8))
Catomnum, Latomnum, Ratomnum, TCpyCell = inte(f.read(16))
atv = floa(f.read(8*4*(TCpyCell+1)), shape=(TCpyCell+1, 4))
atv_ijk = inte(f.read(4*4*(TCpyCell+1)), shape=(TCpyCell+1, 4))
Total_NumOrbs = np.insert(inte(f.read(4*(atomnum))), 0, 1, axis=0)
FNAN = np.insert(inte(f.read(4*(atomnum))), 0, 0, axis=0)
natn = ins(spl(inte(f.read(4*sum(FNAN[1:] + 1))), cum(FNAN[1:] + 1)),
0, zeros(FNAN[0] + 1), axis=0)[:-1]
ncn = ins(spl(inte(f.read(4*np.sum(FNAN[1:] + 1))), cum(FNAN[1:] + 1)),
0, np.zeros(FNAN[0] + 1), axis=0)[:-1]
tv = ins(floa(f.read(8*3*4), shape=(3, 4)), 0, [0, 0, 0, 0], axis=0)
rtv = ins(floa(f.read(8*3*4), shape=(3, 4)), 0, [0, 0, 0, 0], axis=0)
Gxyz = ins(floa(f.read(8*(atomnum)*4), shape=(atomnum, 4)), 0,
[0., 0., 0., 0.], axis=0)
Hks = readHam(SpinP_switch, FNAN, atomnum, Total_NumOrbs, natn, f)
iHks = []
if SpinP_switch == 3:
iHks = readHam(SpinP_switch, FNAN, atomnum, Total_NumOrbs, natn, f)
OLP = readOverlap(atomnum, Total_NumOrbs, FNAN, natn, f)
OLPpox = readOverlap(atomnum, Total_NumOrbs, FNAN, natn, f)
OLPpoy = readOverlap(atomnum, Total_NumOrbs, FNAN, natn, f)
OLPpoz = readOverlap(atomnum, Total_NumOrbs, FNAN, natn, f)
DM = readHam(SpinP_switch, FNAN, atomnum, Total_NumOrbs, natn, f)
Solver = inte(f.read(4))
ChemP, E_Temp = floa(f.read(8*2))
dipole_moment_core = floa(f.read(8*3))
dipole_moment_background = floa(f.read(8*3))
Valence_Electrons, Total_SpinS = floa(f.read(8*2))
f.close()
scf_out = {'atomnum': atomnum, 'SpinP_switch': SpinP_switch,
'Catomnum': Catomnum, 'Latomnum': Latomnum, 'Hks': Hks,
'Ratomnum': Ratomnum, 'TCpyCell': TCpyCell, 'atv': atv,
'Total_NumOrbs': Total_NumOrbs, 'FNAN': FNAN, 'natn': natn,
'ncn': ncn, 'tv': tv, 'rtv': rtv, 'Gxyz': Gxyz, 'OLP': OLP,
'OLPpox': OLPpox, 'OLPpoy': OLPpoy, 'OLPpoz': OLPpoz,
'Solver': Solver, 'ChemP': ChemP, 'E_Temp': E_Temp,
'dipole_moment_core': dipole_moment_core, 'iHks': iHks,
'dipole_moment_background': dipole_moment_background,
'Valence_Electrons': Valence_Electrons, 'atv_ijk': atv_ijk,
'Total_SpinS': Total_SpinS, 'DM': DM
}
return scf_out
def read_band_file(filename=None):
band_data = {}
if not os.path.isfile(filename):
return {}
band_kpath = []
eigen_bands = []
with open(filename, 'r') as f:
line = f.readline().split()
nkpts = 0
nband = int(line[0])
nspin = int(line[1]) + 1
band_data['nband'] = nband
band_data['nspin'] = nspin
line = f.readline().split()
band_data['band_kpath_unitcell'] = [line[:3], line[3:6], line[6:9]]
line = f.readline().split()
band_data['band_nkpath'] = int(line[0])
for i in range(band_data['band_nkpath']):
line = f.readline().split()
band_kpath.append(line)
nkpts += int(line[0])
band_data['nkpts'] = nkpts
band_data['band_kpath'] = band_kpath
kpts = np.zeros((nkpts, 3))
eigen_bands = np.zeros((nspin, nkpts, nband))
for i in range(nspin):
for j in range(nkpts):
line = f.readline()
kpts[j] = np.array(line.split(), dtype=float)[1:]
line = f.readline()
eigen_bands[i, j] = np.array(line.split(), dtype=float)[:]
band_data['eigenvalues'] = eigen_bands
band_data['band_kpts'] = kpts
return band_data
def read_electron_valency(filename='H_CA13'):
array = []
with open(filename, 'r') as f:
array = f.readlines()
f.close()
required_line = ''
for line in array:
if 'valence.electron' in line:
required_line = line
return rn(required_line)
def rn(line='\n', n=1):
"""
Read n'th to last value.
For example:
...
scf.XcType LDA
scf.Kgrid 4 4 4
...
In Python,
>>> str(rn(line, 1))
LDA
>>> line = f.readline()
>>> int(rn(line, 3))
4
"""
return line.split()[-n]
def read_tuple_integer(line):
return tuple([int(x) for x in line.split()[-3:]])
def read_tuple_float(line):
return tuple([float(x) for x in line.split()[-3:]])
def read_integer(line):
return int(rn(line))
def read_float(line):
return float(rn(line))
def read_string(line):
return str(rn(line))
def read_bool(line):
bool = str(rn(line)).lower()
if bool == 'on':
return True
elif bool == 'off':
return False
else:
return None
def read_list_int(line):
return [int(x) for x in line.split()[1:]]
def read_list_float(line):
return [float(x) for x in line.split()[1:]]
def read_list_bool(line):
return [read_bool(x) for x in line.split()[1:]]
def read_matrix(line, key, f):
matrix = []
line = f.readline()
while key not in line:
matrix.append(line.split())
line = f.readline()
return matrix
def read_stress_tensor(line, f, debug=None):
f.readline() # passing empty line
f.readline()
line = f.readline()
xx, xy, xz = read_tuple_float(line)
line = f.readline()
yx, yy, yz = read_tuple_float(line)
line = f.readline()
zx, zy, zz = read_tuple_float(line)
stress = [xx, yy, zz, (zy + yz)/2, (zx + xz)/2, (yx + xy)/2]
return stress
def read_magmoms_and_total_magmom(line, f, debug=None):
total_magmom = read_float(line)
f.readline() # Skip empty lines
f.readline()
line = f.readline()
magmoms = []
while not(line == '' or line.isspace()):
magmoms.append(read_float(line))
line = f.readline()
return magmoms, total_magmom
def read_energy(line, f, debug=None):
# It has Hartree unit yet
return read_float(line)
def read_energies(line, f, debug=None):
line = f.readline()
if '***' in line:
point = 7 # Version 3.8
else:
point = 16 # Version 3.9
for i in range(point):
f.readline()
line = f.readline()
energies = []
while not(line == '' or line.isspace()):
energies.append(float(line.split()[2]))
line = f.readline()
return energies
def read_eigenvalues(line, f, debug=False):
"""
Read the Eigenvalues in the `.out` file and returns the eigenvalue
First, it assumes system have two spins and start reading until it reaches
the end('*****...').
eigenvalues[spin][kpoint][nbands]
For symmetry reason, `.out` file prints the eigenvalues at the half of the
K points. Thus, we have to fill up the rest of the half.
However, if the calculation was conducted only on the gamma point, it will
raise the 'gamma_flag' as true and it will returns the original samples.
"""
def prind(line):
if debug:
print(line)
if 'Hartree' in line:
return None
prind("Read eigenvalue output")
current_line = f.tell()
f.seek(0) # Seek for the kgrid information
while line != '':
line = f.readline().lower()
if 'scf.kgrid' in line:
break
f.seek(current_line) # Retrun to the original position
kgrid = read_tuple_integer(line)
line = f.readline()
line = f.readline()
if kgrid != ():
prind('Non-Gamma point calculation')
prind('scf.Kgrid is %d, %d, %d' % kgrid)
gamma_flag = False
f.seek(f.tell()+57)
else:
prind('Gamma point calculation')
gamma_flag = True
eigenvalues = []
eigenvalues.append([])
eigenvalues.append([]) # Assume two spins
i = 0
while 'Mulliken' not in line:
line = f.readline()
prind(line)
eigenvalues[0].append([])
eigenvalues[1].append([])
while not (line == '' or line.isspace()):
eigenvalues[0][i].append(float(rn(line, 2)))
eigenvalues[1][i].append(float(rn(line, 1)))
line = f.readline()
prind(line)
i += 1
f.readline()
f.readline()
line = f.readline()
prind(line)
if gamma_flag:
return np.asarray(eigenvalues)
eigen_half = np.asarray(eigenvalues)
prind(eigen_half)
# Fill up the half
spin, half_kpts, bands = eigen_half.shape
even_odd = np.array(kgrid).prod() % 2
eigen_values = np.zeros((spin, half_kpts*2-even_odd, bands))
for i in range(half_kpts):
eigen_values[0, i] = eigen_half[0, i, :]
eigen_values[1, i] = eigen_half[1, i, :]
eigen_values[0, 2*half_kpts-1-i-even_odd] = eigen_half[0, i, :]
eigen_values[1, 2*half_kpts-1-i-even_odd] = eigen_half[1, i, :]
return eigen_values
def read_forces(line, f, debug=None):
# It has Hartree per Bohr unit yet
forces = []
f.readline() # Skip Empty line
line = f.readline()
while 'coordinates.forces>' not in line:
forces.append(read_tuple_float(line))
line = f.readline()
return np.array(forces)
def read_dipole(line, f, debug=None):
dipole = []
while 'Total' not in line:
line = f.readline()
dipole.append(read_tuple_float(line))
return dipole
def read_scaled_positions(line, f, debug=None):
scaled_positions = []
f.readline() # Skip Empty lines
f.readline()
f.readline()
line = f.readline()
while not(line == '' or line.isspace()): # Detect empty line
scaled_positions.append(read_tuple_float(line))
line = f.readline()
return scaled_positions
def read_chemical_potential(line, f, debug=None):
return read_float(line)
def get_parameters(out_data=None, log_data=None, restart_data=None,
scfout_data=None, dat_data=None, band_data=None):
"""
From the given data sets, construct the dictionary 'parameters'. If data
is in the paramerters, it will save it.
"""
from ase.calculators.openmx import parameters as param
scaned_data = [dat_data, out_data, log_data, restart_data, scfout_data,
band_data]
openmx_keywords = [param.tuple_integer_keys, param.tuple_float_keys,
param.tuple_bool_keys, param.integer_keys,
param.float_keys, param.string_keys, param.bool_keys,
param.list_int_keys, param.list_bool_keys,
param.list_float_keys, param.matrix_keys]
parameters = {}
for scaned_datum in scaned_data:
for scaned_key in scaned_datum.keys():
for openmx_keyword in openmx_keywords:
if scaned_key in get_standard_key(openmx_keyword):
parameters[scaned_key] = scaned_datum[scaned_key]
continue
translated_parameters = get_standard_parameters(parameters)
parameters.update(translated_parameters)
return {k: v for k, v in parameters.items() if v is not None}
def get_standard_key(key):
"""
Standard ASE parameter format is to USE unerbar(_) instead of dot(.). Also,
It is recommended to use lower case alphabet letter. Not Upper. Thus, we
change the key to standard key
For example:
'scf.XcType' -> 'scf_xctype'
"""
if isinstance(key, str):
return key.lower().replace('.', '_')
elif isinstance(key, list):
return [k.lower().replace('.', '_') for k in key]
else:
return [k.lower().replace('.', '_') for k in key]
def get_standard_parameters(parameters):
"""
Translate the OpenMX parameters to standard ASE parameters. For example,
scf.XcType -> xc
scf.maxIter -> maxiter
scf.energycutoff -> energy_cutoff
scf.Kgrid -> kpts
scf.EigenvalueSolver -> eigensolver
scf.SpinPolarization -> spinpol
scf.criterion -> convergence
scf.Electric.Field -> external
scf.Mixing.Type -> mixer
scf.system.charge -> charge
We followed GPAW schem.
"""
from ase.calculators.openmx import parameters as param
from ase.units import Bohr, Ha, Ry, fs, m, s
units = param.unit_dat_keywords
standard_parameters = {}
standard_units = {'eV': 1, 'Ha': Ha, 'Ry': Ry, 'Bohr': Bohr, 'fs': fs,
'K': 1, 'GV / m': 1e9/1.6e-19 / m, 'Ha/Bohr': Ha/Bohr,
'm/s': m/s, '_amu': 1, 'Tesla': 1}
translated_parameters = {
'scf.XcType': 'xc',
'scf.maxIter': 'maxiter',
'scf.energycutoff': 'energy_cutoff',
'scf.Kgrid': 'kpts',
'scf.EigenvalueSolver': 'eigensolver',
'scf.SpinPolarization': 'spinpol',
'scf.criterion': 'convergence',
'scf.Electric.Field': 'external',
'scf.Mixing.Type': 'mixer',
'scf.system.charge': 'charge'
}
for key in parameters.keys():
for openmx_key in translated_parameters.keys():
if key == get_standard_key(openmx_key):
standard_key = translated_parameters[openmx_key]
unit = standard_units.get(units.get(openmx_key), 1)
standard_parameters[standard_key] = parameters[key] * unit
standard_parameters['spinpol'] = parameters.get('scf_spinpolarization')
return standard_parameters
def get_atomic_formula(out_data=None, log_data=None, restart_data=None,
scfout_data=None, dat_data=None):
"""_formula'.
OpenMX results gives following information. Since, we should pick one
between position/scaled_position, scaled_positions are suppressed by
default. We use input value of position. Not the position after
calculation. It is temporal.
Atoms.SpeciesAndCoordinate -> symbols
Atoms.SpeciesAndCoordinate -> positions
Atoms.UnitVectors -> cell
scaled_positions -> scaled_positions
If `positions` and `scaled_positions` are both given, this key deleted
magmoms -> magmoms, Single value for each atom or three numbers for each
atom for non-collinear calculations.
"""
atomic_formula = {}
parameters = {'symbols': list, 'positions': list, 'scaled_positions': list,
'magmoms': list, 'cell': list}
datas = [out_data, log_data, restart_data, scfout_data, dat_data]
atoms_unitvectors = None
atoms_spncrd_unit = 'ang'
atoms_unitvectors_unit = 'ang'
for data in datas:
# positions unit save
if 'atoms_speciesandcoordinates_unit' in data:
atoms_spncrd_unit = data['atoms_speciesandcoordinates_unit']
# cell unit save
if 'atoms_unitvectors_unit' in data:
atoms_unitvectors_unit = data['atoms_unitvectors_unit']
# symbols, positions or scaled_positions
if 'atoms_speciesandcoordinates' in data:
atoms_spncrd = data['atoms_speciesandcoordinates']
# cell
if 'atoms_unitvectors' in data:
atoms_unitvectors = data['atoms_unitvectors']
# pbc
if 'scf_eigenvaluesolver' in data:
scf_eigenvaluesolver = data['scf_eigenvaluesolver']
# ???
for openmx_keyword in data.keys():
for standard_keyword in parameters.keys():
if openmx_keyword == standard_keyword:
atomic_formula[standard_keyword] = data[openmx_keyword]
atomic_formula['symbols'] = [i[1] for i in atoms_spncrd]
openmx_spncrd_keyword = [[i[2], i[3], i[4]] for i in atoms_spncrd]
# Positions
positions_unit = atoms_spncrd_unit.lower()
positions = np.array(openmx_spncrd_keyword, dtype=float)
if positions_unit == 'ang':
atomic_formula['positions'] = positions
elif positions_unit == 'frac':
scaled_positions = np.array(openmx_spncrd_keyword, dtype=float)
atomic_formula['scaled_positions'] = scaled_positions
elif positions_unit == 'au':
positions = np.array(openmx_spncrd_keyword, dtype=float) * Bohr
atomic_formula['positions'] = positions
# If Cluster, pbc is False, else it is True
atomic_formula['pbc'] = scf_eigenvaluesolver.lower() != 'cluster'
# Cell Handling
if atoms_unitvectors is not None:
openmx_cell_keyword = atoms_unitvectors
cell = np.array(openmx_cell_keyword, dtype=float)
if atoms_unitvectors_unit.lower() == 'ang':
atomic_formula['cell'] = openmx_cell_keyword
elif atoms_unitvectors_unit.lower() == 'au':
atomic_formula['cell'] = cell * Bohr
# If `positions` and `scaled_positions` are both given, delete `scaled_..`
if atomic_formula.get('scaled_positions') is not None and \
atomic_formula.get('positions') is not None:
del atomic_formula['scaled_positions']
return atomic_formula
def get_results(out_data=None, log_data=None, restart_data=None,
scfout_data=None, dat_data=None, band_data=None):
"""
From the gien data sets, construct the dictionary 'results' and return it'
OpenMX version 3.8 can yield following properties
free_energy, Ha # Same value with energy
energy, Ha
energies, Ha
forces, Ha/Bohr
stress(after 3.8 only) Ha/Bohr**3
dipole Debye
read_chemical_potential Ha
magmoms muB ?? set to 1
magmom muB ?? set to 1
"""
from numpy import array as arr
results = {}
implemented_properties = {'free_energy': Ha, 'energy': Ha, 'energies': Ha,
'forces': Ha/Bohr, 'stress': Ha/Bohr**3,
'dipole': Debye, 'chemical_potential': Ha,
'magmom': 1, 'magmoms': 1, 'eigenvalues': Ha}
data = [out_data, log_data, restart_data, scfout_data, dat_data, band_data]
for datum in data:
for key in datum.keys():
for property in implemented_properties.keys():
if key == property:
results[key] = arr(datum[key])*implemented_properties[key]
return results
def get_file_name(extension='.out', filename=None, absolute_directory=True):
directory, prefix = os.path.split(filename)
if directory == '':
directory = os.curdir
if absolute_directory:
return os.path.abspath(directory + '/' + prefix + extension)
else:
return os.path.basename(directory + '/' + prefix + extension)
|