1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
import os
import numpy as np
from ase.units import Bohr
from ase.io.fortranfile import FortranFile
def xv_to_atoms(filename):
"""Create atoms object from xv file.
Parameters:
-filename : str. The filename of the '.XV' file.
return : An Atoms object
"""
from ase.atoms import Atoms
if not os.path.exists(filename):
filename += '.gz'
with open(filename, 'r') as f:
# Read cell vectors (lines 1-3)
vectors = []
for i in range(3):
data = f.readline().split()
vectors.append([float(data[j]) * Bohr for j in range(3)])
# Read number of atoms (line 4)
natoms = int(f.readline().split()[0])
# Read remaining lines
speciesnumber, atomnumbers, xyz, V = [], [], [], []
for line in f.readlines():
if len(line) > 5: # Ignore blank lines
data = line.split()
speciesnumber.append(int(data[0]))
atomnumbers.append(int(data[1]))
xyz.append([float(data[2 + j]) * Bohr for j in range(3)])
V.append([float(data[5 + j]) * Bohr for j in range(3)])
vectors = np.array(vectors)
atomnumbers = np.array(atomnumbers)
xyz = np.array(xyz)
atoms = Atoms(numbers=atomnumbers, positions=xyz, cell=vectors)
assert natoms == len(atoms)
return atoms
def read_rho(fname):
"Read unformatted Siesta charge density file"
# TODO:
#
# Handle formatted and NetCDF files.
#
# Siesta source code (at least 2.0.2) can possibly also
# save RHO as a _formatted_ file (the source code seems
# prepared, but there seems to be no fdf-options for it though).
# Siesta >= 3 has support for saving RHO as a NetCDF file
# (according to manual)
fh = FortranFile(fname)
# Read (but ignore) unit cell vectors
x = fh.readReals('d')
if len(x) != 3 * 3:
raise IOError('Failed to read cell vectors')
# Read number of grid points and spin components
x = fh.readInts()
if len(x) != 4:
raise IOError('Failed to read grid size')
gpts = x # number of 'X', 'Y', 'Z', 'spin' gridpoints
rho = np.zeros(gpts)
for ispin in range(gpts[3]):
for n3 in range(gpts[2]):
for n2 in range(gpts[1]):
x = fh.readReals('f')
if len(x) != gpts[0]:
raise IOError('Failed to read RHO[:,%i,%i,%i]' %
(n2, n3, ispin))
rho[:, n2, n3, ispin] = x
fh.close()
return rho
def get_valence_charge(filename):
""" Read the valence charge from '.psf'-file."""
with open(filename, 'r') as f:
f.readline()
f.readline()
f.readline()
valence = -float(f.readline().split()[-1])
return valence
def read_vca_synth_block(filename, species_number=None):
""" Read the SyntheticAtoms block from the output of the
'fractional' siesta utility.
Parameters:
- filename: String with '.synth' output from fractional.
- species_number: Optional argument to replace override the
species number in the text block.
Returns: A string that can be inserted into the main '.fdf-file'.
"""
with open(filename, 'r') as f:
lines = f.readlines()
lines = lines[1:-1]
if species_number is not None:
lines[0] = '%d\n' % species_number
block = ''.join(lines).strip()
return block
def readHSX(fname):
"""
Read unformatted siesta HSX file
"""
import collections
HSX_tuple = collections.namedtuple('HSX',
['norbitals', 'norbitals_sc', 'nspin',
'nonzero', 'is_gamma', 'sc_orb2uc_orb',
'row2nnzero', 'sparse_ind2column',
'H_sparse', 'S_sparse',
'aB2RaB_sparse', 'total_elec_charge',
'temp'])
fh = FortranFile(fname)
norbitals, norbitals_sc, nspin, nonzero = fh.readInts('i')
is_gamma = fh.readInts('i')[0]
sc_orb2uc_orb = 0
if is_gamma == 0:
sc_orb2uc_orb = fh.readInts('i')
row2nnzero = fh.readInts('i')
sum_row2nnzero = np.sum(row2nnzero)
if (sum_row2nnzero != nonzero):
raise ValueError('sum_row2nnzero != nonzero: {0} != {1}'
.format(sum_row2nnzero, nonzero))
row2displ = np.zeros((norbitals), dtype=int)
for i in range(1, norbitals):
row2displ[i] = row2displ[i - 1] + row2nnzero[i - 1]
max_nonzero = np.max(row2nnzero)
int_buff = np.zeros((max_nonzero), dtype=int)
sparse_ind2column = np.zeros((nonzero))
# Fill the rows for each index in *_sparse arrays
for irow in range(norbitals):
f = row2nnzero[irow]
int_buff[0:f] = fh.readInts('i')
# read set of rows where nonzero elements reside
d = row2displ[irow]
sparse_ind2column[d:d + f] = int_buff[0:f]
# END of Fill the rows for each index in *_sparse arrays
# allocate H, S and X matrices
sp_buff = np.zeros((max_nonzero), dtype=float)
H_sparse = np.zeros((nonzero, nspin), dtype=float)
S_sparse = np.zeros((nonzero), dtype=float)
aB2RaB_sparse = np.zeros((3, nonzero), dtype=float)
# Read the data to H_sparse array
for ispin in range(nspin):
for irow in range(norbitals):
d = row2displ[irow]
f = row2nnzero[irow]
sp_buff[0:f] = fh.readReals('f')
H_sparse[d:d + f, ispin] = sp_buff[0:f]
# Read the data to S_sparse array
for irow in range(norbitals):
f = row2nnzero[irow]
d = row2displ[irow]
sp_buff[0:f] = fh.readReals('f')
S_sparse[d:d + f] = sp_buff[0:f]
total_elec_charge, temp = fh.readReals('d')
sp_buff = np.zeros((3 * max_nonzero), dtype=float)
# Read the data to S_sparse array
for irow in range(norbitals):
f = row2nnzero[irow]
d = row2displ[irow]
sp_buff[0: 3 * f] = fh.readReals('f')
aB2RaB_sparse[0, d:d + f] = sp_buff[0:f]
aB2RaB_sparse[1, d:d + f] = sp_buff[f:2 * f]
aB2RaB_sparse[2, d:d + f] = sp_buff[2 * f:3 * f]
fh.close()
return HSX_tuple(norbitals, norbitals_sc, nspin, nonzero, is_gamma,
sc_orb2uc_orb, row2nnzero, sparse_ind2column, H_sparse,
S_sparse, aB2RaB_sparse, total_elec_charge, temp)
def readDIM(fname):
"""
Read unformatted siesta DIM file
"""
import collections
DIM_tuple = collections.namedtuple('DIM', ['natoms_sc', 'norbitals_sc',
'norbitals', 'nspin',
'nnonzero',
'natoms_interacting'])
fh = FortranFile(fname)
natoms_sc = fh.readInts('i')[0]
norbitals_sc = fh.readInts('i')[0]
norbitals = fh.readInts('i')[0]
nspin = fh.readInts('i')[0]
nnonzero = fh.readInts('i')[0]
natoms_interacting = fh.readInts('i')[0]
fh.close()
return DIM_tuple(natoms_sc, norbitals_sc, norbitals, nspin,
nnonzero, natoms_interacting)
def readPLD(fname, norbitals, natoms):
"""
Read unformatted siesta PLD file
"""
import collections
# use struct library to read mixed data type from binary
import struct
PLD_tuple = collections.namedtuple('PLD', ['max_rcut', 'orb2ao',
'orb2uorb', 'orb2occ',
'atm2sp', 'atm2shift',
'coord_sc', 'cell',
'nunit_cells'])
fh = FortranFile(fname)
orb2ao = np.zeros((norbitals), dtype=int)
orb2uorb = np.zeros((norbitals), dtype=int)
orb2occ = np.zeros((norbitals), dtype=float)
max_rcut = fh.readReals('d')
for iorb in range(norbitals):
dat = fh.readRecord()
dat_size = struct.calcsize('iid')
val_list = struct.unpack('iid', dat[0:dat_size])
orb2ao[iorb] = val_list[0]
orb2uorb[iorb] = val_list[1]
orb2occ[iorb] = val_list[2]
atm2sp = np.zeros((natoms), dtype=int)
atm2shift = np.zeros((natoms + 1), dtype=int)
for iatm in range(natoms):
atm2sp[iatm] = fh.readInts('i')[0]
for iatm in range(natoms + 1):
atm2shift[iatm] = fh.readInts('i')[0]
cell = np.zeros((3, 3), dtype=float)
nunit_cells = np.zeros((3), dtype=int)
for i in range(3):
cell[i, :] = fh.readReals('d')
nunit_cells = fh.readInts('i')
coord_sc = np.zeros((natoms, 3), dtype=float)
for iatm in range(natoms):
coord_sc[iatm, :] = fh.readReals('d')
fh.close()
return PLD_tuple(max_rcut, orb2ao, orb2uorb, orb2occ, atm2sp, atm2shift,
coord_sc, cell, nunit_cells)
def readWFSX(fname):
"""
Read unformatted siesta WFSX file
"""
import collections
# use struct library to read mixed data type from binary
import struct
WFSX_tuple = collections.namedtuple('WFSX',
['nkpoints', 'nspin', 'norbitals',
'gamma', 'orb2atm', 'orb2strspecies',
'orb2ao', 'orb2n', 'orb2strsym',
'kpoints', 'DFT_E', 'DFT_X',
'mo_spin_kpoint_2_is_read'])
fh = FortranFile(fname)
nkpoints, gamma = fh.readInts('i')
nspin = fh.readInts('i')[0]
norbitals = fh.readInts('i')[0]
orb2atm = np.zeros((norbitals), dtype=int)
orb2strspecies = []
orb2ao = np.zeros((norbitals), dtype=int)
orb2n = np.zeros((norbitals), dtype=int)
orb2strsym = []
# for string list are better to select all the string length
dat_size = struct.calcsize('i20sii20s')
dat = fh.readRecord()
ind_st = 0
ind_fn = dat_size
for iorb in range(norbitals):
val_list = struct.unpack('i20sii20s', dat[ind_st:ind_fn])
orb2atm[iorb] = val_list[0]
orb2strspecies.append(val_list[1])
orb2ao[iorb] = val_list[2]
orb2n[iorb] = val_list[3]
orb2strsym.append(val_list[4])
ind_st = ind_st + dat_size
ind_fn = ind_fn + dat_size
orb2strspecies = np.array(orb2strspecies)
orb2strsym = np.array(orb2strsym)
kpoints = np.zeros((3, nkpoints), dtype=np.float64)
DFT_E = np.zeros((norbitals, nspin, nkpoints), dtype=np.float64)
if (gamma == 1):
DFT_X = np.zeros((1, norbitals, norbitals, nspin, nkpoints),
dtype=np.float64)
eigenvector = np.zeros((1, norbitals), dtype=float)
else:
DFT_X = np.zeros((2, norbitals, norbitals, nspin, nkpoints),
dtype=np.float64)
eigenvector = np.zeros((2, norbitals), dtype=float)
mo_spin_kpoint_2_is_read = np.zeros((norbitals, nspin, nkpoints),
dtype=bool)
mo_spin_kpoint_2_is_read[0:norbitals, 0:nspin, 0:nkpoints] = False
dat_size = struct.calcsize('iddd')
for ikpoint in range(nkpoints):
for ispin in range(nspin):
dat = fh.readRecord()
val_list = struct.unpack('iddd', dat[0:dat_size])
ikpoint_in = val_list[0] - 1
kpoints[0:3, ikpoint] = val_list[1:4]
if (ikpoint != ikpoint_in):
raise ValueError('siesta_get_wfsx: ikpoint != ikpoint_in')
ispin_in = fh.readInts('i')[0] - 1
if (ispin_in > nspin - 1):
msg = 'siesta_get_wfsx: err: ispin_in>nspin\n \
siesta_get_wfsx: ikpoint, ispin, ispin_in = \
{0} {1} {2}\n siesta_get_wfsx'.format(ikpoint,
ispin, ispin_in)
raise ValueError(msg)
norbitals_in = fh.readInts('i')[0]
if (norbitals_in > norbitals):
msg = 'siesta_get_wfsx: err: norbitals_in>norbitals\n \
siesta_get_wfsx: ikpoint, norbitals, norbitals_in = \
{0} {1} {2}\n siesta_get_wfsx'.format(ikpoint,
norbitals,
norbitals_in)
raise ValueError(msg)
for imolecular_orb in range(norbitals_in):
imolecular_orb_in = fh.readInts('i')[0] - 1
if (imolecular_orb_in > norbitals - 1):
msg = """
siesta_get_wfsx: err: imolecular_orb_in>norbitals\n
siesta_get_wfsx: ikpoint, norbitals,
imolecular_orb_in = {0} {1} {2}\n
siesta_get_wfsx""".format(ikpoint, norbitals,
imolecular_orb_in)
raise ValueError(msg)
real_E_eV = fh.readReals('d')[0]
eigenvector = fh.readReals('f')
DFT_E[imolecular_orb_in, ispin_in,
ikpoint] = real_E_eV / 13.60580
DFT_X[:, :, imolecular_orb_in, ispin_in,
ikpoint] = eigenvector
mo_spin_kpoint_2_is_read[imolecular_orb_in, ispin_in,
ikpoint] = True
if (not all(mo_spin_kpoint_2_is_read[:, ispin_in, ikpoint])):
msg = 'siesta_get_wfsx: warn: .not. all(mo_spin_k_2_is_read)'
print('mo_spin_kpoint_2_is_read = ', mo_spin_kpoint_2_is_read)
raise ValueError(msg)
fh.close()
return WFSX_tuple(nkpoints, nspin, norbitals, gamma, orb2atm,
orb2strspecies, orb2ao, orb2n, orb2strsym,
kpoints, DFT_E, DFT_X, mo_spin_kpoint_2_is_read)
|