1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
|
"""
This module defines the ASE interface to SIESTA.
Written by Mads Engelund (see www.espeem.com)
Home of the SIESTA package:
http://www.uam.es/departamentos/ciencias/fismateriac/siesta
2017.04 - Pedro Brandimarte: changes for python 2-3 compatible
"""
import os
import re
import tempfile
import warnings
import shutil
from os.path import join, isfile, islink
import numpy as np
from ase.units import Ry, eV, Bohr
from ase.data import atomic_numbers
from ase.calculators.siesta.import_functions import read_rho, xv_to_atoms
from ase.calculators.siesta.import_functions import \
get_valence_charge, read_vca_synth_block
from ase.calculators.calculator import FileIOCalculator, ReadError
from ase.calculators.calculator import Parameters, all_changes
from ase.calculators.siesta.parameters import PAOBasisBlock, Species
from ase.calculators.siesta.parameters import format_fdf
meV = 0.001 * eV
def parse_siesta_version(output: bytes) -> str:
match = re.search(rb'Siesta Version\s*:\s*(\S+)', output)
if match is None:
raise RuntimeError('Could not get Siesta version info from output '
'{!r}'.format(output))
string = match.group(1).decode('ascii')
return string
def get_siesta_version(executable: str) -> str:
""" Return SIESTA version number.
Run the command, for instance 'siesta' and
then parse the output in order find the
version number.
"""
# XXX We need a test of this kind of function. But Siesta().command
# is not enough to tell us how to run Siesta, because it could contain
# all sorts of mpirun and other weird parts.
temp_dirname = tempfile.mkdtemp(prefix='siesta-version-check-')
try:
from subprocess import Popen, PIPE
proc = Popen([executable],
stdin=PIPE,
stdout=PIPE,
stderr=PIPE,
cwd=temp_dirname)
output, _ = proc.communicate()
# We are not providing any input, so Siesta will give us a failure
# saying that it has no Chemical_species_label and exit status 1
# (as of siesta-4.1-b4)
finally:
shutil.rmtree(temp_dirname)
return parse_siesta_version(output)
def bandpath2bandpoints(path):
lines = []
add = lines.append
add('BandLinesScale ReciprocalLatticeVectors\n')
add('%block BandPoints\n')
for kpt in path.kpts:
add(' {:18.15f} {:18.15f} {:18.15f}\n'.format(*kpt))
add('%endblock BandPoints')
return ''.join(lines)
def read_bands_file(fd):
efermi = float(next(fd))
next(fd) # Appears to be max/min energy. Not important for us
header = next(fd) # Array shape: nbands, nspins, nkpoints
nbands, nspins, nkpts = np.array(header.split()).astype(int)
# three fields for kpt coords, then all the energies
ntokens = nbands * nspins + 3
# Read energies for each kpoint:
data = []
for i in range(nkpts):
line = next(fd)
tokens = line.split()
while len(tokens) < ntokens:
# Multirow table. Keep adding lines until the table ends,
# which should happen exactly when we have all the energies
# for this kpoint.
line = next(fd)
tokens += line.split()
assert len(tokens) == ntokens
values = np.array(tokens).astype(float)
data.append(values)
data = np.array(data)
assert len(data) == nkpts
kpts = data[:, :3]
energies = data[:, 3:]
energies = energies.reshape(nkpts, nspins, nbands)
assert energies.shape == (nkpts, nspins, nbands)
return kpts, energies, efermi
def resolve_band_structure(path, kpts, energies, efermi):
"""Convert input BandPath along with Siesta outputs into BS object."""
# Right now this function doesn't do much.
#
# Not sure how the output kpoints in the siesta.bands file are derived.
# They appear to be related to the lattice parameter.
#
# We should verify that they are consistent with our input path,
# but since their meaning is unclear, we can't quite do so.
#
# Also we should perhaps verify the cell. If we had the cell, we
# could construct the bandpath from scratch (i.e., pure outputs).
from ase.spectrum.band_structure import BandStructure
ksn2e = energies
skn2e = np.swapaxes(ksn2e, 0, 1)
bs = BandStructure(path, skn2e, reference=efermi)
return bs
class SiestaParameters(Parameters):
"""Parameters class for the calculator.
Documented in BaseSiesta.__init__
"""
def __init__(
self,
label='siesta',
mesh_cutoff=200 * Ry,
energy_shift=100 * meV,
kpts=None,
xc='LDA',
basis_set='DZP',
spin='non-polarized',
species=tuple(),
pseudo_qualifier=None,
pseudo_path=None,
symlink_pseudos=None,
atoms=None,
restart=None,
ignore_bad_restart_file=FileIOCalculator._deprecated,
fdf_arguments=None,
atomic_coord_format='xyz',
bandpath=None):
kwargs = locals()
kwargs.pop('self')
Parameters.__init__(self, **kwargs)
class Siesta(FileIOCalculator):
"""Calculator interface to the SIESTA code.
"""
# Siesta manual does not document many of the basis names.
# basis_specs.f has a ton of aliases for each.
# Let's just list one of each type then.
#
# Maybe we should be less picky about these keyword names.
allowed_basis_names = ['SZ', 'SZP',
'DZ', 'DZP', 'DZP2',
'TZ', 'TZP', 'TZP2', 'TZP3']
allowed_spins = ['non-polarized', 'collinear',
'non-collinear', 'spin-orbit']
allowed_xc = {
'LDA': ['PZ', 'CA', 'PW92'],
'GGA': ['PW91', 'PBE', 'revPBE', 'RPBE',
'WC', 'AM05', 'PBEsol', 'PBEJsJrLO',
'PBEGcGxLO', 'PBEGcGxHEG', 'BLYP'],
'VDW': ['DRSLL', 'LMKLL', 'KBM', 'C09', 'BH', 'VV']}
name = 'siesta'
command = 'siesta < PREFIX.fdf > PREFIX.out'
implemented_properties = [
'energy',
'forces',
'stress',
'dipole',
'eigenvalues',
'density',
'fermi_energy']
# Dictionary of valid input vaiables.
default_parameters = SiestaParameters()
# XXX Not a ASE standard mechanism (yet). We need to communicate to
# ase.spectrum.band_structure.calculate_band_structure() that we expect
# it to use the bandpath keyword.
accepts_bandpath_keyword = True
def __init__(self, command=None, **kwargs):
"""ASE interface to the SIESTA code.
Parameters:
- label : The basename of all files created during
calculation.
- mesh_cutoff : Energy in eV.
The mesh cutoff energy for determining number of
grid points in the matrix-element calculation.
- energy_shift : Energy in eV
The confining energy of the basis set generation.
- kpts : Tuple of 3 integers, the k-points in different
directions.
- xc : The exchange-correlation potential. Can be set to
any allowed value for either the Siesta
XC.funtional or XC.authors keyword. Default "LDA"
- basis_set : "SZ"|"SZP"|"DZ"|"DZP"|"TZP", strings which specify
the type of functions basis set.
- spin : "non-polarized"|"collinear"|
"non-collinear|spin-orbit".
The level of spin description to be used.
- species : None|list of Species objects. The species objects
can be used to to specify the basis set,
pseudopotential and whether the species is ghost.
The tag on the atoms object and the element is used
together to identify the species.
- pseudo_path : None|path. This path is where
pseudopotentials are taken from.
If None is given, then then the path given
in $SIESTA_PP_PATH will be used.
- pseudo_qualifier: None|string. This string will be added to the
pseudopotential path that will be retrieved.
For hydrogen with qualifier "abc" the
pseudopotential "H.abc.psf" will be retrieved.
- symlink_pseudos: None|bool
If true, symlink pseudopotentials
into the calculation directory, else copy them.
Defaults to true on Unix and false on Windows.
- atoms : The Atoms object.
- restart : str. Prefix for restart file.
May contain a directory.
Default is None, don't restart.
- ignore_bad_restart_file: bool.
Ignore broken or missing restart file.
By default, it is an error if the restart
file is missing or broken.
- fdf_arguments: Explicitly given fdf arguments. Dictonary using
Siesta keywords as given in the manual. List values
are written as fdf blocks with each element on a
separate line, while tuples will write each element
in a single line. ASE units are assumed in the
input.
- atomic_coord_format: "xyz"|"zmatrix", strings to switch between
the default way of entering the system's geometry
(via the block AtomicCoordinatesAndAtomicSpecies)
and a recent method via the block Zmatrix. The
block Zmatrix allows to specify basic geometry
constrains such as realized through the ASE classes
FixAtom, FixedLine and FixedPlane.
"""
# Put in the default arguments.
parameters = self.default_parameters.__class__(**kwargs)
# Call the base class.
FileIOCalculator.__init__(
self,
command=command,
**parameters)
# For compatibility with old variable name:
commandvar = os.environ.get('SIESTA_COMMAND')
if commandvar is not None:
warnings.warn('Please use $ASE_SIESTA_COMMAND and not '
'$SIESTA_COMMAND, which will be ignored '
'in the future. The new command format will not '
'work with the "<%s > %s" specification. Use '
'instead e.g. "ASE_SIESTA_COMMAND=siesta'
' < PREFIX.fdf > PREFIX.out", where PREFIX will '
'automatically be replaced by calculator label',
np.VisibleDeprecationWarning)
runfile = self.prefix + '.fdf'
outfile = self.prefix + '.out'
try:
self.command = commandvar % (runfile, outfile)
except TypeError:
raise ValueError(
"The 'SIESTA_COMMAND' environment must " +
"be a format string" +
" with two string arguments.\n" +
"Example : 'siesta < %s > %s'.\n" +
"Got '%s'" % commandvar)
def __getitem__(self, key):
"""Convenience method to retrieve a parameter as
calculator[key] rather than calculator.parameters[key]
Parameters:
-key : str, the name of the parameters to get.
"""
return self.parameters[key]
def species(self, atoms):
"""Find all relevant species depending on the atoms object and
species input.
Parameters :
- atoms : An Atoms object.
"""
# For each element use default species from the species input, or set
# up a default species from the general default parameters.
symbols = np.array(atoms.get_chemical_symbols())
tags = atoms.get_tags()
species = list(self['species'])
default_species = [
s for s in species
if (s['tag'] is None) and s['symbol'] in symbols]
default_symbols = [s['symbol'] for s in default_species]
for symbol in symbols:
if symbol not in default_symbols:
spec = Species(symbol=symbol,
basis_set=self['basis_set'],
tag=None)
default_species.append(spec)
default_symbols.append(symbol)
assert len(default_species) == len(np.unique(symbols))
# Set default species as the first species.
species_numbers = np.zeros(len(atoms), int)
i = 1
for spec in default_species:
mask = symbols == spec['symbol']
species_numbers[mask] = i
i += 1
# Set up the non-default species.
non_default_species = [s for s in species if not s['tag'] is None]
for spec in non_default_species:
mask1 = (tags == spec['tag'])
mask2 = (symbols == spec['symbol'])
mask = np.logical_and(mask1, mask2)
if sum(mask) > 0:
species_numbers[mask] = i
i += 1
all_species = default_species + non_default_species
return all_species, species_numbers
def set(self, **kwargs):
"""Set all parameters.
Parameters:
-kwargs : Dictionary containing the keywords defined in
SiestaParameters.
"""
# XXX Inserted these next few lines because set() would otherwise
# discard all previously set keywords to their defaults! --askhl
current = self.parameters.copy()
current.update(kwargs)
kwargs = current
# Find not allowed keys.
default_keys = list(self.__class__.default_parameters)
offending_keys = set(kwargs) - set(default_keys)
if len(offending_keys) > 0:
mess = "'set' does not take the keywords: %s "
raise ValueError(mess % list(offending_keys))
# Use the default parameters.
parameters = self.__class__.default_parameters.copy()
parameters.update(kwargs)
kwargs = parameters
# Check energy inputs.
for arg in ['mesh_cutoff', 'energy_shift']:
value = kwargs.get(arg)
if value is None:
continue
if not (isinstance(value, (float, int)) and value > 0):
mess = "'%s' must be a positive number(in eV), \
got '%s'" % (arg, value)
raise ValueError(mess)
# Check the basis set input.
if 'basis_set' in kwargs:
basis_set = kwargs['basis_set']
allowed = self.allowed_basis_names
if not (isinstance(basis_set, PAOBasisBlock) or
basis_set in allowed):
mess = "Basis must be either %s, got %s" % (allowed, basis_set)
raise ValueError(mess)
# Check the spin input.
if 'spin' in kwargs:
if kwargs['spin'] == 'UNPOLARIZED':
warnings.warn("The keyword 'UNPOLARIZED' is deprecated,"
"and replaced by 'non-polarized'",
np.VisibleDeprecationWarning)
kwargs['spin'] = 'non-polarized'
spin = kwargs['spin']
if spin is not None and (spin.lower() not in self.allowed_spins):
mess = "Spin must be %s, got '%s'" % (self.allowed_spins, spin)
raise ValueError(mess)
# Check the functional input.
xc = kwargs.get('xc', 'LDA')
if isinstance(xc, (tuple, list)) and len(xc) == 2:
functional, authors = xc
if functional.lower() not in [k.lower() for k in self.allowed_xc]:
mess = "Unrecognized functional keyword: '%s'" % functional
raise ValueError(mess)
lsauthorslower = [a.lower() for a in self.allowed_xc[functional]]
if authors.lower() not in lsauthorslower:
mess = "Unrecognized authors keyword for %s: '%s'"
raise ValueError(mess % (functional, authors))
elif xc in self.allowed_xc:
functional = xc
authors = self.allowed_xc[xc][0]
else:
found = False
for key, value in self.allowed_xc.items():
if xc in value:
found = True
functional = key
authors = xc
break
if not found:
raise ValueError("Unrecognized 'xc' keyword: '%s'" % xc)
kwargs['xc'] = (functional, authors)
# Check fdf_arguments.
if kwargs['fdf_arguments'] is None:
kwargs['fdf_arguments'] = {}
if not isinstance(kwargs['fdf_arguments'], dict):
raise TypeError("fdf_arguments must be a dictionary.")
# Call baseclass.
FileIOCalculator.set(self, **kwargs)
def set_fdf_arguments(self, fdf_arguments):
""" Set the fdf_arguments after the initialization of the
calculator.
"""
self.validate_fdf_arguments(fdf_arguments)
FileIOCalculator.set(self, fdf_arguments=fdf_arguments)
def validate_fdf_arguments(self, fdf_arguments):
""" Raises error if the fdf_argument input is not a
dictionary of allowed keys.
"""
# None is valid
if fdf_arguments is None:
return
# Type checking.
if not isinstance(fdf_arguments, dict):
raise TypeError("fdf_arguments must be a dictionary.")
def calculate(self,
atoms=None,
properties=['energy'],
system_changes=all_changes):
"""Capture the RuntimeError from FileIOCalculator.calculate
and add a little debug information from the Siesta output.
See base FileIocalculator for documentation.
"""
FileIOCalculator.calculate(
self,
atoms=atoms,
properties=properties,
system_changes=system_changes)
# The below snippet would run if calculate() failed but I have
# disabled it for now since it looks to be just for debugging.
# --askhl
"""
# Here a test to check if the potential are in the right place!!!
except RuntimeError as e:
try:
fname = os.path.join(self.directory, self.label+'.out')
with open(fname, 'r') as f:
lines = f.readlines()
debug_lines = 10
print('##### %d last lines of the Siesta output' % debug_lines)
for line in lines[-20:]:
print(line.strip())
print('##### end of siesta output')
raise e
except:
raise e
"""
def write_input(self, atoms, properties=None, system_changes=None):
"""Write input (fdf)-file.
See calculator.py for further details.
Parameters:
- atoms : The Atoms object to write.
- properties : The properties which should be calculated.
- system_changes : List of properties changed since last run.
"""
# Call base calculator.
FileIOCalculator.write_input(
self,
atoms=atoms,
properties=properties,
system_changes=system_changes)
if system_changes is None and properties is None:
return
filename = self.getpath(ext='fdf')
# On any changes, remove all analysis files.
if system_changes is not None:
self.remove_analysis()
# Start writing the file.
with open(filename, 'w') as f:
# Write system name and label.
f.write(format_fdf('SystemName', self.prefix))
f.write(format_fdf('SystemLabel', self.prefix))
f.write("\n")
# Write explicitly given options first to
# allow the user to override anything.
fdf_arguments = self['fdf_arguments']
keys = sorted(fdf_arguments.keys())
for key in keys:
f.write(format_fdf(key, fdf_arguments[key]))
# Force siesta to return error on no convergence.
# as default consistent with ASE expectations.
if 'SCFMustConverge' not in fdf_arguments.keys():
f.write(format_fdf('SCFMustConverge', True))
f.write("\n")
# Write spin level.
f.write(format_fdf('Spin ', self['spin']))
# Spin backwards compatibility.
if self['spin'] == 'collinear':
f.write(format_fdf('SpinPolarized', (True, "# Backwards compatibility.")))
elif self['spin'] == 'non-collinear':
f.write(format_fdf('NonCollinear', (True, "# Backwards compatibility.")))
# Write functional.
functional, authors = self['xc']
f.write(format_fdf('XC.functional', functional))
f.write(format_fdf('XC.authors', authors))
f.write("\n")
# Write mesh cutoff and energy shift.
f.write(format_fdf('MeshCutoff',
(self['mesh_cutoff'], 'eV')))
f.write(format_fdf('PAO.EnergyShift',
(self['energy_shift'], 'eV')))
f.write("\n")
# Write the minimal arg
self._write_species(f, atoms)
self._write_structure(f, atoms)
# Use the saved density matrix if only 'cell' and 'positions'
# have changed.
if (system_changes is None or
('numbers' not in system_changes and
'initial_magmoms' not in system_changes and
'initial_charges' not in system_changes)):
f.write(format_fdf('DM.UseSaveDM', True))
# Save density.
if 'density' in properties:
f.write(format_fdf('SaveRho', True))
self._write_kpts(f)
if self['bandpath'] is not None:
lines = bandpath2bandpoints(self['bandpath'])
f.write(lines)
f.write('\n')
def read(self, filename):
"""Read structural parameters from file .XV file
Read other results from other files
filename : siesta.XV
"""
fname = self.getpath(filename)
if not os.path.exists(fname):
raise ReadError("The restart file '%s' does not exist" % fname)
self.atoms = xv_to_atoms(fname)
self.read_results()
def getpath(self, fname=None, ext=None):
""" Returns the directory/fname string """
if fname is None:
fname = self.prefix
if ext is not None:
fname = '{}.{}'.format(fname, ext)
return os.path.join(self.directory, fname)
def remove_analysis(self):
""" Remove all analysis files"""
filename = self.getpath(ext='RHO')
if os.path.exists(filename):
os.remove(filename)
def _write_structure(self, f, atoms):
"""Translate the Atoms object to fdf-format.
Parameters:
- f: An open file object.
- atoms: An atoms object.
"""
cell = atoms.cell
f.write('\n')
if cell.rank in [1, 2]:
raise ValueError('Expected 3D unit cell or no unit cell. You may '
'wish to add vacuum along some directions.')
# Write lattice vectors
if np.any(cell):
f.write(format_fdf('LatticeConstant', '1.0 Ang'))
f.write('%block LatticeVectors\n')
for i in range(3):
for j in range(3):
s = (' %.15f' % cell[i, j]).rjust(16) + ' '
f.write(s)
f.write('\n')
f.write('%endblock LatticeVectors\n')
f.write('\n')
self._write_atomic_coordinates(f, atoms)
# Write magnetic moments.
magmoms = atoms.get_initial_magnetic_moments()
# The DM.InitSpin block must be written to initialize to
# no spin. SIESTA default is FM initialization, if the
# block is not written, but we must conform to the
# atoms object.
if magmoms is not None:
if len(magmoms) == 0:
f.write('#Empty block forces ASE initialization.\n')
f.write('%block DM.InitSpin\n')
if len(magmoms) != 0 and isinstance(magmoms[0], np.ndarray):
for n, M in enumerate(magmoms):
if M[0] != 0:
f.write(' %d %.14f %.14f %.14f \n' % (n + 1, M[0], M[1], M[2]))
elif len(magmoms) != 0 and isinstance(magmoms[0], float):
for n, M in enumerate(magmoms):
if M != 0:
f.write(' %d %.14f \n' % (n + 1, M))
f.write('%endblock DM.InitSpin\n')
f.write('\n')
def _write_atomic_coordinates(self, f, atoms):
"""Write atomic coordinates.
Parameters:
- f: An open file object.
- atoms: An atoms object.
"""
af = self.parameters.atomic_coord_format.lower()
if af == 'xyz':
self._write_atomic_coordinates_xyz(f, atoms)
elif af == 'zmatrix':
self._write_atomic_coordinates_zmatrix(f, atoms)
else:
raise RuntimeError('Unknown atomic_coord_format: {}'.format(af))
def _write_atomic_coordinates_xyz(self, f, atoms):
"""Write atomic coordinates.
Parameters:
- f: An open file object.
- atoms: An atoms object.
"""
species, species_numbers = self.species(atoms)
f.write('\n')
f.write('AtomicCoordinatesFormat Ang\n')
f.write('%block AtomicCoordinatesAndAtomicSpecies\n')
for atom, number in zip(atoms, species_numbers):
xyz = atom.position
line = (' %.9f' % xyz[0]).rjust(16) + ' '
line += (' %.9f' % xyz[1]).rjust(16) + ' '
line += (' %.9f' % xyz[2]).rjust(16) + ' '
line += str(number) + '\n'
f.write(line)
f.write('%endblock AtomicCoordinatesAndAtomicSpecies\n')
f.write('\n')
origin = tuple(-atoms.get_celldisp().flatten())
if any(origin):
f.write('%block AtomicCoordinatesOrigin\n')
f.write(' %.4f %.4f %.4f\n' % origin)
f.write('%endblock AtomicCoordinatesOrigin\n')
f.write('\n')
def _write_atomic_coordinates_zmatrix(self, f, atoms):
"""Write atomic coordinates in Z-matrix format.
Parameters:
- f: An open file object.
- atoms: An atoms object.
"""
species, species_numbers = self.species(atoms)
f.write('\n')
f.write('ZM.UnitsLength Ang\n')
f.write('%block Zmatrix\n')
f.write(' cartesian\n')
fstr = "{:5d}" + "{:20.10f}" * 3 + "{:3d}" * 3 + "{:7d} {:s}\n"
a2constr = self.make_xyz_constraints(atoms)
a2p, a2s = atoms.get_positions(), atoms.get_chemical_symbols()
for ia, (sp, xyz, ccc, sym) in enumerate(zip(species_numbers,
a2p,
a2constr,
a2s)):
f.write(fstr.format(
sp, xyz[0], xyz[1], xyz[2], ccc[0],
ccc[1], ccc[2], ia + 1, sym))
f.write('%endblock Zmatrix\n')
origin = tuple(-atoms.get_celldisp().flatten())
if any(origin):
f.write('%block AtomicCoordinatesOrigin\n')
f.write(' %.4f %.4f %.4f\n' % origin)
f.write('%endblock AtomicCoordinatesOrigin\n')
f.write('\n')
def make_xyz_constraints(self, atoms):
""" Create coordinate-resolved list of constraints [natoms, 0:3]
The elements of the list must be integers 0 or 1
1 -- means that the coordinate will be updated during relaxation
0 -- mains that the coordinate will be fixed during relaxation
"""
from ase.constraints import FixAtoms, FixedLine, FixedPlane
import sys
import warnings
a = atoms
a2c = np.ones((len(a), 3), dtype=int)
for c in a.constraints:
if isinstance(c, FixAtoms):
a2c[c.get_indices()] = 0
elif isinstance(c, FixedLine):
norm_dir = c.dir / np.linalg.norm(c.dir)
if (max(norm_dir) - 1.0) > 1e-6:
raise RuntimeError(
'norm_dir: {} -- must be one of the Cartesian axes...'
.format(norm_dir))
a2c[c.a] = norm_dir.round().astype(int)
elif isinstance(c, FixedPlane):
norm_dir = c.dir / np.linalg.norm(c.dir)
if (max(norm_dir) - 1.0) > 1e-6:
raise RuntimeError(
'norm_dir: {} -- must be one of the Cartesian axes...'
.format(norm_dir))
a2c[c.a] = abs(1 - norm_dir.round().astype(int))
else:
warnings.warn('Constraint {} is ignored at {}'
.format(str(c), sys._getframe().f_code))
return a2c
def _write_kpts(self, f):
"""Write kpts.
Parameters:
- f : Open filename.
"""
if self["kpts"] is None:
return
kpts = np.array(self['kpts'])
f.write('\n')
f.write('#KPoint grid\n')
f.write('%block kgrid_Monkhorst_Pack\n')
for i in range(3):
s = ''
if i < len(kpts):
number = kpts[i]
displace = 0.0
else:
number = 1
displace = 0
for j in range(3):
if j == i:
write_this = number
else:
write_this = 0
s += ' %d ' % write_this
s += '%1.1f\n' % displace
f.write(s)
f.write('%endblock kgrid_Monkhorst_Pack\n')
f.write('\n')
def _write_species(self, f, atoms):
"""Write input related the different species.
Parameters:
- f: An open file object.
- atoms: An atoms object.
"""
species, species_numbers = self.species(atoms)
if self['pseudo_path'] is not None:
pseudo_path = self['pseudo_path']
elif 'SIESTA_PP_PATH' in os.environ:
pseudo_path = os.environ['SIESTA_PP_PATH']
else:
mess = "Please set the environment variable 'SIESTA_PP_PATH'"
raise Exception(mess)
f.write(format_fdf('NumberOfSpecies', len(species)))
f.write(format_fdf('NumberOfAtoms', len(atoms)))
pao_basis = []
chemical_labels = []
basis_sizes = []
synth_blocks = []
for species_number, spec in enumerate(species):
species_number += 1
symbol = spec['symbol']
atomic_number = atomic_numbers[symbol]
if spec['pseudopotential'] is None:
if self.pseudo_qualifier() == '':
label = symbol
pseudopotential = label + '.psf'
else:
label = '.'.join([symbol, self.pseudo_qualifier()])
pseudopotential = label + '.psf'
else:
pseudopotential = spec['pseudopotential']
label = os.path.basename(pseudopotential)
label = '.'.join(label.split('.')[:-1])
if not os.path.isabs(pseudopotential):
pseudopotential = join(pseudo_path, pseudopotential)
if not os.path.exists(pseudopotential):
mess = "Pseudopotential '%s' not found" % pseudopotential
raise RuntimeError(mess)
name = os.path.basename(pseudopotential)
name = name.split('.')
name.insert(-1, str(species_number))
if spec['ghost']:
name.insert(-1, 'ghost')
atomic_number = -atomic_number
name = '.'.join(name)
pseudo_targetpath = self.getpath(name)
if join(os.getcwd(), name) != pseudopotential:
if islink(pseudo_targetpath) or isfile(pseudo_targetpath):
os.remove(pseudo_targetpath)
symlink_pseudos = self['symlink_pseudos']
if symlink_pseudos is None:
symlink_pseudos = not os.name == 'nt'
if symlink_pseudos:
os.symlink(pseudopotential, pseudo_targetpath)
else:
shutil.copy(pseudopotential, pseudo_targetpath)
if not spec['excess_charge'] is None:
atomic_number += 200
n_atoms = sum(np.array(species_numbers) == species_number)
paec = float(spec['excess_charge']) / n_atoms
vc = get_valence_charge(pseudopotential)
fraction = float(vc + paec) / vc
pseudo_head = name[:-4]
fractional_command = os.environ['SIESTA_UTIL_FRACTIONAL']
cmd = '%s %s %.7f' % (fractional_command,
pseudo_head,
fraction)
os.system(cmd)
pseudo_head += '-Fraction-%.5f' % fraction
synth_pseudo = pseudo_head + '.psf'
synth_block_filename = pseudo_head + '.synth'
os.remove(name)
shutil.copyfile(synth_pseudo, name)
synth_block = read_vca_synth_block(
synth_block_filename,
species_number=species_number)
synth_blocks.append(synth_block)
if len(synth_blocks) > 0:
f.write(format_fdf('SyntheticAtoms', list(synth_blocks)))
label = '.'.join(np.array(name.split('.'))[:-1])
string = ' %d %d %s' % (species_number, atomic_number, label)
chemical_labels.append(string)
if isinstance(spec['basis_set'], PAOBasisBlock):
pao_basis.append(spec['basis_set'].script(label))
else:
basis_sizes.append((" " + label, spec['basis_set']))
f.write((format_fdf('ChemicalSpecieslabel', chemical_labels)))
f.write('\n')
f.write((format_fdf('PAO.Basis', pao_basis)))
f.write((format_fdf('PAO.BasisSizes', basis_sizes)))
f.write('\n')
def pseudo_qualifier(self):
"""Get the extra string used in the middle of the pseudopotential.
The retrieved pseudopotential for a specific element will be
'H.xxx.psf' for the element 'H' with qualifier 'xxx'. If qualifier
is set to None then the qualifier is set to functional name.
"""
if self['pseudo_qualifier'] is None:
return self['xc'][0].lower()
else:
return self['pseudo_qualifier']
def read_results(self):
"""Read the results.
"""
self.read_number_of_grid_points()
self.read_energy()
self.read_forces_stress()
self.read_eigenvalues()
self.read_kpoints()
self.read_dipole()
self.read_pseudo_density()
self.read_hsx()
self.read_dim()
if self.results['hsx'] is not None:
self.read_pld(self.results['hsx'].norbitals,
len(self.atoms))
self.atoms.cell = self.results['pld'].cell * Bohr
else:
self.results['pld'] = None
self.read_wfsx()
self.read_ion(self.atoms)
self.read_bands()
def read_bands(self):
bandpath = self['bandpath']
if bandpath is None:
return
if len(bandpath.kpts) < 1:
return
fname = self.getpath(ext='bands')
with open(fname) as fd:
kpts, energies, efermi = read_bands_file(fd)
bs = resolve_band_structure(bandpath, kpts, energies, efermi)
self.results['bandstructure'] = bs
def band_structure(self):
return self.results['bandstructure']
def read_ion(self, atoms):
"""
Read the ion.xml file of each specie
"""
from ase.calculators.siesta.import_ion_xml import get_ion
species, species_numbers = self.species(atoms)
self.results['ion'] = {}
for species_number, spec in enumerate(species):
species_number += 1
symbol = spec['symbol']
atomic_number = atomic_numbers[symbol]
if spec['pseudopotential'] is None:
if self.pseudo_qualifier() == '':
label = symbol
else:
label = '.'.join([symbol, self.pseudo_qualifier()])
pseudopotential = self.getpath(label, 'psf')
else:
pseudopotential = spec['pseudopotential']
label = os.path.basename(pseudopotential)
label = '.'.join(label.split('.')[:-1])
name = os.path.basename(pseudopotential)
name = name.split('.')
name.insert(-1, str(species_number))
if spec['ghost']:
name.insert(-1, 'ghost')
atomic_number = -atomic_number
name = '.'.join(name)
label = '.'.join(np.array(name.split('.'))[:-1])
if label not in self.results['ion']:
fname = self.getpath(label, 'ion.xml')
if os.path.isfile(fname):
self.results['ion'][label] = get_ion(fname)
def read_hsx(self):
"""
Read the siesta HSX file.
return a namedtuple with the following arguments:
'norbitals', 'norbitals_sc', 'nspin', 'nonzero',
'is_gamma', 'sc_orb2uc_orb', 'row2nnzero', 'sparse_ind2column',
'H_sparse', 'S_sparse', 'aB2RaB_sparse', 'total_elec_charge', 'temp'
"""
from ase.calculators.siesta.import_functions import readHSX
filename = self.getpath(ext='HSX')
if isfile(filename):
self.results['hsx'] = readHSX(filename)
else:
self.results['hsx'] = None
def read_dim(self):
"""
Read the siesta DIM file
Retrun a namedtuple with the following arguments:
'natoms_sc', 'norbitals_sc', 'norbitals', 'nspin',
'nnonzero', 'natoms_interacting'
"""
from ase.calculators.siesta.import_functions import readDIM
filename = self.getpath(ext='DIM')
if isfile(filename):
self.results['dim'] = readDIM(filename)
else:
self.results['dim'] = None
def read_pld(self, norb, natms):
"""
Read the siesta PLD file
Return a namedtuple with the following arguments:
'max_rcut', 'orb2ao', 'orb2uorb', 'orb2occ', 'atm2sp',
'atm2shift', 'coord_sc', 'cell', 'nunit_cells'
"""
from ase.calculators.siesta.import_functions import readPLD
filename = self.getpath(ext='PLD')
if isfile(filename):
self.results['pld'] = readPLD(filename, norb, natms)
else:
self.results['pld'] = None
def read_wfsx(self):
"""
Read the siesta WFSX file
Return a namedtuple with the following arguments:
"""
from ase.calculators.siesta.import_functions import readWFSX
fname_woext = os.path.join(self.directory, self.prefix)
if isfile(fname_woext + '.WFSX'):
filename = fname_woext + '.WFSX'
self.results['wfsx'] = readWFSX(filename)
elif isfile(fname_woext + '.fullBZ.WFSX'):
filename = fname_woext + '.fullBZ.WFSX'
readWFSX(filename)
self.results['wfsx'] = readWFSX(filename)
else:
self.results['wfsx'] = None
def read_pseudo_density(self):
"""Read the density if it is there."""
filename = self.getpath(ext='RHO')
if isfile(filename):
self.results['density'] = read_rho(filename)
def read_number_of_grid_points(self):
"""Read number of grid points from SIESTA's text-output file. """
fname = self.getpath(ext='out')
with open(fname, 'r') as f:
for line in f:
line = line.strip().lower()
if line.startswith('initmesh: mesh ='):
n_points = [int(word) for word in line.split()[3:8:2]]
self.results['n_grid_point'] = n_points
break
else:
raise RuntimeError
def read_energy(self):
"""Read energy from SIESTA's text-output file.
"""
fname = self.getpath(ext='out')
with open(fname, 'r') as f:
text = f.read().lower()
assert 'final energy' in text
lines = iter(text.split('\n'))
# Get the energy and free energy the last time it appears
for line in lines:
has_energy = line.startswith('siesta: etot =')
if has_energy:
self.results['energy'] = float(line.split()[-1])
line = next(lines)
self.results['free_energy'] = float(line.split()[-1])
if ('energy' not in self.results or
'free_energy' not in self.results):
raise RuntimeError
def read_forces_stress(self):
"""Read the forces and stress from the FORCE_STRESS file.
"""
fname = self.getpath('FORCE_STRESS')
with open(fname, 'r') as f:
lines = f.readlines()
stress_lines = lines[1:4]
stress = np.empty((3, 3))
for i in range(3):
line = stress_lines[i].strip().split(' ')
line = [s for s in line if len(s) > 0]
stress[i] = [float(s) for s in line]
self.results['stress'] = np.array(
[stress[0, 0], stress[1, 1], stress[2, 2],
stress[1, 2], stress[0, 2], stress[0, 1]])
self.results['stress'] *= Ry / Bohr**3
start = 5
self.results['forces'] = np.zeros((len(lines) - start, 3), float)
for i in range(start, len(lines)):
line = [s for s in lines[i].strip().split(' ') if len(s) > 0]
self.results['forces'][i - start] = [float(s) for s in line[2:5]]
self.results['forces'] *= Ry / Bohr
def read_eigenvalues(self):
""" A robust procedure using the suggestion by Federico Marchesin """
fname = self.getpath(ext='EIG')
try:
with open(fname, "r") as f:
self.results['fermi_energy'] = float(f.readline())
n, nspin, nkp = map(int, f.readline().split())
_ee = np.split(
np.array(f.read().split()).astype(float), nkp)
except (IOError):
return 1
ksn2e = np.delete(_ee, 0, 1).reshape([nkp, nspin, n])
eigarray = np.empty((nspin, nkp, n))
eigarray[:] = np.inf
for k, sn2e in enumerate(ksn2e):
for s, n2e in enumerate(sn2e):
eigarray[s, k, :] = n2e
assert np.isfinite(eigarray).all()
self.results['eigenvalues'] = eigarray
return 0
def read_kpoints(self):
""" Reader of the .KP files """
fname = self.getpath(ext='KP')
try:
with open(fname, "r") as fd:
nkp = int(next(fd))
kpoints = np.empty((nkp, 3))
kweights = np.empty(nkp)
for i in range(nkp):
line = next(fd)
tokens = line.split()
numbers = np.array(tokens[1:]).astype(float)
kpoints[i] = numbers[:3]
kweights[i] = numbers[3]
except (IOError):
return 1
self.results['kpoints'] = kpoints
self.results['kweights'] = kweights
return 0
def read_dipole(self):
"""Read dipole moment. """
dipole = np.zeros([1, 3])
with open(self.getpath(ext='out'), 'r') as f:
for line in f:
if line.rfind('Electric dipole (Debye)') > -1:
dipole = np.array([float(f) for f in line.split()[5:8]])
# debye to e*Ang
self.results['dipole'] = dipole * 0.2081943482534
def get_fermi_level(self):
return self.results['fermi_energy']
def get_k_point_weights(self):
return self.results['kweights']
def get_ibz_k_points(self):
return self.results['kpoints']
class Siesta3_2(Siesta):
def __init__(self, *args, **kwargs):
warnings.warn(
"The Siesta3_2 calculator class will no longer be supported. "
"Use 'ase.calculators.siesta.Siesta in stead. "
"If using the ASE interface with SIESTA 3.2 you must explicitly "
"include the keywords 'SpinPolarized', 'NonCollinearSpin' and "
"'SpinOrbit' if needed.",
np.VisibleDeprecationWarning)
Siesta.__init__(self, *args, **kwargs)
|