1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
# flake8: noqa
"""Infrared and Raman intensities using siesta and MBPT_LCAO"""
import pickle
from math import sqrt
from sys import stdout
import numpy as np
import ase.units as units
from ase.parallel import parprint, paropen
from ase.vibrations import Vibrations
import warnings
# XXX This class contains much repeated code. FIXME
class SiestaRaman(Vibrations):
"""
Class for calculating vibrational modes, infrared and
non-resonant Raman intensities using finite difference.
The vibrational modes are calculated from a finite difference
approximation of the Dynamical matrix and the IR and Ram intensities from
a finite difference approximation of the gradient of the dipole
moment. The method is described in:
D. Porezag, M. R. Pederson:
"Infrared intensities and Raman-scattering activities within
density-functional theory",
Phys. Rev. B 54, 7830 (1996)
The calculator object (calc) must be Siesta, and the
pyscf program (nao branch: https://github.com/cfm-mpc/pyscf/tree/nao)
must be installed.
>>> calc.get_dipole_moment(atoms)
In addition to the methods included in the ``Vibrations`` class
the ``Raman`` as the ``Infrared`` class introduces two methods;
*get_spectrum()* and *write_spectra()*. The *summary()*, *get_energies()*,
*get_frequencies()*, *get_spectrum()* and *write_spectra()*
methods all take an optional *method* keyword. Use
method='Frederiksen' to use the method described in:
T. Frederiksen, M. Paulsson, M. Brandbyge, A. P. Jauho:
"Inelastic transport theory from first-principles: methodology
and applications for nanoscale devices",
Phys. Rev. B 75, 205413 (2007)
atoms: Atoms object
The atoms to work on.
siesta: Siesta calculator
mbpt_inp: dict
dictionary containing the input for the mbpt_lcao program
indices: list of int
List of indices of atoms to vibrate. Default behavior is
to vibrate all atoms.
name: str
Name to use for files.
delta: float
Magnitude of displacements.
nfree: int
Number of displacements per degree of freedom, 2 or 4 are
supported. Default is 2 which will displace each atom +delta
and -delta in each cartesian direction.
directions: list of int
Cartesian coordinates to calculate the gradient
of the dipole moment in.
For example directions = 2 only dipole moment in the z-direction will
be considered, whereas for directions = [0, 1] only the dipole
moment in the xy-plane will be considered. Default behavior is to
use the dipole moment in all directions.
freq_pol: float or array of float
frequency at which the Raman intensity is computed, can be float or array
Example:
See the example test/siesta/mbpt_lcao/script_raman.py
This example calculate the Raman signal for a CO2 molecule.
You should get something like,
---------------------------------------------------------------------------------------------------------------------------
Mode Frequency Intensity IR Intensity Raman (real) Intensity Raman (imag) Raman Ehanced
# meV cm^-1 (D/Å)^2 amu^-1 A^4 amu^-1 A^4 amu^-1 A^4 amu^-1
---------------------------------------------------------------------------------------------------------------------------
0 23.2i 187.1i 0.0005 1.0810 0.0000 0.0000
1 22.7i 183.2i 0.0007 1.1471 0.0000 0.0000
2 4.0i 32.6i 0.0001 0.0054 0.0000 0.0000
3 19.6 158.0 0.0001 1.1790 0.0000 0.0000
4 21.0 169.2 0.0004 1.0894 0.0000 0.0000
5 77.9 628.3 0.4257 0.0060 0.0000 0.0000
6 79.7 642.6 0.4354 0.0022 0.0000 0.0000
7 163.5 1319.0 0.0000 21.7631 0.0000 0.0000
8 294.0 2371.0 12.1479 0.0002 0.0000 0.0000
---------------------------------------------------------------------------------------------------------------------------
It can be compared to calculations done with Quantum Espresso (see test/siesta/mbpt_lcao/raman_espresso)
that give something like,
# mode [cm-1] [THz] IR Raman depol.fact
1 -0.01 -0.0002 0.0000 0.4930 0.7500
2 -0.00 -0.0000 0.0000 0.0018 0.7500
3 0.00 0.0001 0.0000 0.8202 0.7500
4 0.00 0.0001 0.0000 0.9076 0.7500
5 0.01 0.0002 0.0000 1.8576 0.7499
6 0.07 0.0021 0.0000 0.0001 0.7500
7 717.64 21.5144 0.5303 0.0000 0.0862
8 1244.37 37.3052 0.0000 23.8219 0.1038
9 2206.78 66.1575 12.6139 0.0000 0.6417
"""
def __init__(self, atoms, siesta, indices=None, name='ram',
delta=0.01, nfree=2, directions=None, freq_pol=0.0, **kw):
Vibrations.__init__(self, atoms, indices=indices, name=name,
delta = delta, nfree=nfree)
if atoms.constraints:
warnings.warn('WARNING! \n Your Atoms object is constrained. ' +
'Some forces may be unintended set to zero. \n')
self.name = name + '-d%.3f' % delta
self.calc = atoms.calc
if directions is None:
self.directions = np.asarray([0, 1, 2])
else:
self.directions = np.asarray(directions)
self.ir = True
self.ram = True
self.siesta = siesta
if isinstance(freq_pol, list):
self.freq_pol = np.array(freq_pol)
elif isinstance(freq_pol, float):
self.freq_pol = np.array([freq_pol])
elif isinstance(freq_pol, float) or isinstance(freq_pol, np.ndarray):
self.freq_pol = freq_pol
else:
raise ValueError("wrong type for freq_pol, only float, list or array")
self.pyscf_arg = kw
def get_polarizability(self):
if "tddft_iter_tol" in list(self.pyscf_arg.keys()):
if self.pyscf_arg["tddft_iter_tol"] > 1e-4:
warnings.warn("tddft_iter_tol > 1e-4, polarizability may not have " +
"enough precision. The Raman intensity will not be precise.")
else:
self.pyscf_arg["tddft_iter_tol"] = 1e-4
self.siesta.lrtddft(Edir=np.array([1.0, 1.0, 1.0]), **self.pyscf_arg)
return self.siesta.results["freq range"], \
self.siesta.results["polarizability nonin"], \
self.siesta.results["polarizability inter"]
def read(self, method='standard', direction='central', inter = True):
self.method = method.lower()
self.direction = direction.lower()
assert self.method in ['standard', 'frederiksen']
if direction != 'central':
raise NotImplementedError(
'Only central difference is implemented at the moment.')
# Get "static" dipole moment polarizability and forces
name = '%s.eq.pckl' % self.name
[forces_zero, dipole_zero, freq_zero,
noninPol_zero, pol_zero] = pickle.load(open(name, "rb"))
self.dipole_zero = (sum(dipole_zero**2)**0.5) / units.Debye
self.force_zero = max([sum((forces_zero[j])**2)**0.5
for j in self.indices])
self.noninPol_zero = noninPol_zero * (units.Bohr)**3 # Ang**3
self.pol_zero = pol_zero * (units.Bohr)**3 # Ang**3
ndof = 3 * len(self.indices)
H = np.empty((ndof, ndof))
dpdx = np.empty((ndof, 3))
dadx = np.empty((ndof, self.pol_zero.shape[0], 3, 3), dtype=complex)
r = 0
for a in self.indices:
for i in 'xyz':
name = '%s.%d%s' % (self.name, a, i)
[fminus, dminus, frminus, noninpminus, pminus] = pickle.load(
open(name + '-.pckl', "rb"))
[fplus, dplus, frplus, noninpplus, pplus] = pickle.load(
open(name + '+.pckl', "rb"))
if self.nfree == 4:
[fminusminus, dminusminus, frminusminus,
noninpminusminus, pminusminus] =\
pickle.load(open(name + '--.pckl', "rb"))
[fplusplus, dplusplus, frplusplus,
noninpplusplus, pplusplus] =\
pickle.load(open(name + '++.pckl', "rb"))
if self.method == 'frederiksen':
fminus[a] += -fminus.sum(0)
fplus[a] += -fplus.sum(0)
if self.nfree == 4:
fminusminus[a] += -fminus.sum(0)
fplusplus[a] += -fplus.sum(0)
if self.nfree == 2:
H[r] = (fminus - fplus)[self.indices].ravel() / 2.0
dpdx[r] = (dminus - dplus)
if inter:
dadx[r] = (pminus - pplus)
else:
dadx[r] = (noninpminus - noninpplus)
if self.nfree == 4:
H[r] = (-fminusminus + 8 * fminus - 8 * fplus +
fplusplus)[self.indices].ravel() / 12.0
dpdx[r] = (-dplusplus + 8 * dplus - 8 * dminus +
dminusminus) / 6.0
if inter:
dadx[r] = (-pplusplus + 8 * pplus - 8 * pminus +
pminusminus) / 6.0
else:
dadx[r] = (-noninpplusplus + 8 * noninpplus - 8 * noninpminus +
noninpminusminus) / 6.0
H[r] /= 2 * self.delta
dpdx[r] /= 2 * self.delta
dadx[r] /= 2 * self.delta # polarizability in Ang
for n in range(3):
if n not in self.directions:
dpdx[r][n] = 0
dpdx[r][n] = 0
r += 1
# Calculate eigenfrequencies and eigenvectors
m = self.atoms.get_masses()
H += H.copy().T
self.H = H
m = self.atoms.get_masses()
self.im = np.repeat(m[self.indices]**-0.5, 3)
omega2, modes = np.linalg.eigh(self.im[:, None] * H * self.im)
self.modes = modes.T.copy()
# infrared
# Calculate intensities
dpdq = np.array([dpdx[j] / sqrt(m[self.indices[j // 3]] *
units._amu / units._me)
for j in range(ndof)])
dpdQ = np.dot(dpdq.T, modes)
dpdQ = dpdQ.T
intensities = np.array([sum(dpdQ[j]**2) for j in range(ndof)])
# Conversion factor:
s = units._hbar * 1e10 / sqrt(units._e * units._amu)
self.hnu = s * omega2.astype(complex)**0.5
# Conversion factor from atomic units to (D/Angstrom)^2/amu.
conv = (1.0 / units.Debye)**2 * units._amu / units._me
self.intensities_ir = intensities * conv
# Raman
dadq = np.array([(dadx[j, :, :, :] / (units.Bohr**2)) /
sqrt(m[self.indices[j // 3]] * units._amu / units._me)
for j in range(ndof)])
dadQ = np.zeros((ndof, 3, 3, dadq.shape[1]), dtype=complex)
for w in range(dadq.shape[1]):
dadQ[:, :, :, w] = np.dot(dadq[:, w, :, :].T, modes).T
ak = (dadQ[:, 0, 0, :] + dadQ[:, 1, 1, :] + dadQ[:, 2, 2, :]) / 3.0
gk2 = ((dadQ[:, 0, 0, :] - dadQ[:, 1, 1, :])**2 + (dadQ[:, 1, 1, :] -
dadQ[:, 2, 2, :])**2 + (dadQ[:, 2, 2, :] -
dadQ[:, 0, 0, :])**2 + 6 * (dadQ[:, 0, 1, :]**2 +
dadQ[:, 1, 2, :]**2 + dadQ[:, 2, 0, :]**2))
intensities = np.zeros((ndof, self.freq_pol.size), dtype=np.complex128)
intensities_ram_enh = np.zeros((ndof, self.freq_pol.size), dtype=np.complex128)
# calculate the coefficients for calculating Raman Signal
for j in range(ndof):
aj = self.get_nearrest_value(self.freq_pol, freq_zero, ak[j, :])
gj2 = self.get_nearrest_value(self.freq_pol, freq_zero, gk2[j, :])
intensities[j, :] = (45 * aj**2 + 7 * gj2) / 45.0
self.intensities_ram = intensities # Bohr**4 .me**-1
self.intensities_ram_enh = intensities_ram_enh # Bohr**4 .me**-1
def get_nearrest_value(self, val, x_range, y, kind="cubic", prec = 1e-3):
"""
return the closest value of y at val (interpolating the function)
val may be a number or an array
"""
import scipy.interpolate as interp
func = interp.interp1d(x_range, y, kind = kind)
new_range = np.arange(x_range[0], x_range[x_range.size-1], prec)
interpol = func(new_range)
if isinstance(val, np.ndarray):
mult = np.zeros(val.shape, dtype=interpol.dtype)
for i, va in enumerate(val):
idx = (np.abs(new_range-va)).argmin()
mult[i] = interpol[idx]
return mult
else:
idx = (np.abs(new_range-val)).argmin()
return np.array([interpol[idx]])
def intensity_prefactor(self, intensity_unit):
if intensity_unit == '(D/A)2/amu':
return 1.0, '(D/Å)^2 amu^-1'
elif intensity_unit == 'km/mol':
# conversion factor from Porezag PRB 54 (1996) 7830
return 42.255, 'km/mol'
elif intensity_unit == 'au':
return 1.0, ' a.u.'
elif intensity_unit == 'A^4 amu^-1':
# Quantum espresso units
return (units.Bohr**4) / (units._me / units._amu), ' A^4 amu^-1'
else:
raise RuntimeError('Intensity unit >' + intensity_unit +
'< unknown.')
def summary(self, method='standard', direction='central', freq_pol = 0.0,
intensity_unit_ir='(D/A)2/amu', intensity_unit_ram='au', log=stdout,
inter = True):
hnu = self.get_energies(method, direction, inter=inter)
s = 0.01 * units._e / units._c / units._hplanck
iu_ir, iu_string_ir = self.intensity_prefactor(intensity_unit_ir)
iu_ram, iu_string_ram = self.intensity_prefactor(intensity_unit_ram)
arr = []
freq_idx = (np.abs(self.freq_pol-freq_pol)).argmin()
print("index: ", freq_idx)
if intensity_unit_ir == '(D/A)2/amu':
iu_format_ir = '%9.4f '
elif intensity_unit_ir == 'km/mol':
iu_string_ir = ' ' + iu_string_ir
iu_format_ir = ' %7.1f '
elif intensity_unit_ir == 'au':
iu_format_ir = '%.6e '
elif intensity_unit_ir == 'A^4 amu^-1':
iu_format_ir = '%9.4f '
if intensity_unit_ram == '(D/A)2/amu':
iu_format_ram = '%9.4f'
elif intensity_unit_ram == 'km/mol':
iu_string_ram = ' ' + iu_string_ram
iu_format_ram = ' %7.1f'
elif intensity_unit_ram == 'au':
iu_format_ram = '%.6e '
elif intensity_unit_ram == 'A^4 amu^-1':
iu_format_ram = '%9.4f '
if isinstance(log, str):
log = paropen(log, 'a')
parprint('---------------------------------------------------------------------------------------------------------------------------', file=log)
parprint(' Mode Frequency Intensity IR Intensity Raman (real) Intensity Raman (imag) Raman Ehanced', file=log)
parprint(' # meV cm^-1 ' + iu_string_ir + ' ' + iu_string_ram +
' ' + iu_string_ram + ' ' + iu_string_ram, file=log)
parprint('---------------------------------------------------------------------------------------------------------------------------', file=log)
for n, e in enumerate(hnu):
if e.imag != 0:
c = 'i'
e = e.imag
else:
c = ' '
e = e.real
arr.append([n, 1000 * e, s * e, iu_ir * self.intensities_ir[n],
iu_ram * self.intensities_ram[n, freq_idx].real, iu_ram *
self.intensities_ram[n, freq_idx].imag])
parprint(('%3d %6.1f%s %7.1f%s ' + iu_format_ir + iu_format_ram +
iu_format_ram + iu_format_ram) %
(n, 1000 * e, c, s * e, c, iu_ir * self.intensities_ir[n],
iu_ram * self.intensities_ram[n, freq_idx].real, iu_ram *
self.intensities_ram[n, freq_idx].imag, iu_ram *
self.intensities_ram_enh[n, freq_idx].real), file=log)
parprint(
'-----------------------------------------------------------------------------------------',
file=log)
parprint('Zero-point energy: %.3f eV' % self.get_zero_point_energy(),
file=log)
parprint('Static dipole moment: %.3f D' % self.dipole_zero, file=log)
parprint('Maximum force on atom in `equilibrium`: %.4f eV/Å' %
self.force_zero, file=log)
parprint(file=log)
np.savetxt('ram-summary.txt', np.array(arr))
def write_latex_array(self, fname='vib_latex_array.tex.table', caption='', nb_column=5,
hline=False, method='standard', direction='central',
intensity_unit_ir='(D/A)2/amu', intensity_unit_ram='au',
label='tab_vib', log=stdout, freq_pol=0.0):
"""
Write the summary into a latex table that can be easily incorporate into a latex file.
"""
hnu = self.get_energies(method, direction)
s = 0.01 * units._e / units._c / units._hplanck
iu_ir, iu_string_ir = self.intensity_prefactor(intensity_unit_ir)
iu_ram, iu_string_ram = self.intensity_prefactor(intensity_unit_ram)
freq_idx = (np.abs(self.freq_pol-freq_pol)).argmin()
if intensity_unit_ir == '(D/A)2/amu':
iu_format_ir = '%9.4f '
elif intensity_unit_ir == 'km/mol':
iu_string_ir = ' ' + iu_string_ir
iu_format_ir = ' %7.1f '
elif intensity_unit_ir == 'au':
iu_format_ir = '%.6e '
elif intensity_unit_ir == 'A^4 amu^-1':
iu_format_ir = '%9.4f '
if intensity_unit_ram == '(D/A)2/amu':
iu_format_ram = '%9.4f'
elif intensity_unit_ram == 'km/mol':
iu_string_ram = ' ' + iu_string_ram
iu_format_ram = ' %7.1f'
elif intensity_unit_ram == 'au':
iu_format_ram = '%.6e '
elif intensity_unit_ram == 'A^4 amu^-1':
iu_format_ram = '%9.4f '
if isinstance(log, str):
log = paropen(log, 'a')
if hline:
column = "|"
else:
column = ""
for i in range(nb_column + 1):
if hline:
column = column + "c|"
else:
column = column + "c"
f = open(fname, 'w')
f.write("\\begin{table}[h] \n")
f.write(" \\caption{" + caption + "} \n")
f.write(" \\begin{center}\n")
f.write(" \\begin{tabular}{" + column + "} \n")
if hline:
f.write(" \\hline \n")
f.write(' Mode & Frequency (meV) & Frequency ($cm^{-1}$) & Intensity IR (' +
iu_string_ir + ') & Intensity Raman (' + iu_string_ram + ') \n')
if hline:
f.write(" \\hline \n")
for n, e in enumerate(hnu):
if e.imag != 0:
c = ' + i'
e = e.imag
else:
c = ' '
e = e.real
f.write((' %3d & %6.1f %s & %7.1f %s & ' + iu_format_ir +
' & ' + iu_format_ram + ' \n') % (n, 1000 * e, c, s * e, c,
iu_ir * self.intensities_ir[n], iu_ram *
self.intensities_ram[n, freq_idx].real))
if hline:
f.write(r" \hline \n")
f.write(" \\end{tabular} \n")
f.write(" \\end{center} \n")
f.write(" \\label{" + label + "} \n")
f.write("\\end{table}\n")
f.close()
def get_spectrum(self, start=800, end=4000, npts=None, width=4,
type='Gaussian', method='standard', direction='central',
intensity_unit='(D/A)2/amu', normalize=False, freq_pol=0.0):
"""Get raman spectrum.
The method returns wavenumbers in cm^-1 with corresponding
absolute infrared intensity.
Start and end point, and width of the Gaussian/Lorentzian should
be given in cm^-1.
normalize=True ensures the integral over the peaks to give the
intensity.
"""
name = '%s.eq.pckl' % self.name
[forces_zero, dipole_zero, freq_zero, noninPol_zero,
pol_zero] = pickle.load(open(name, "rb"))
freq_idx = (np.abs(self.freq_pol-freq_pol)).argmin()
frequencies = self.get_frequencies(method, direction).real
intensities_ir = self.intensities_ir
intensities_ram = self.intensities_ram[:, freq_idx]
intensities_ram_enh = self.intensities_ram_enh[:, freq_idx]
energies, spectrum_ir = self.fold(frequencies, intensities_ir,
start, end, npts, width, type,
normalize)
energies, spectrum_ram = self.fold(frequencies, intensities_ram.real,
start, end, npts, width, type,
normalize)
energies, spectrum_ram_enh = self.fold(frequencies, intensities_ram_enh.real,
start, end, npts, width, type,
normalize)
return energies, spectrum_ir, spectrum_ram, spectrum_ram_enh
def write_spectra(self, out='ram-spectra.dat', start=800, end=4000,
npts=None, width=10, type='Gaussian',
method='standard', direction='central',
intensity_unit_ir='(D/A)2/amu',
intensity_unit_ram='au', normalize=False):
"""Write out raman spectrum to file.
First column is the wavenumber in cm^-1, the second column the
absolute infrared intensities, and
the third column the absorbance scaled so that data runs
from 1 to 0. idem for the Rahman spectrum for columns 4 and 5. Start and end
point, and width of the Gaussian/Lorentzian should be given
in cm^-1."""
energies, spectrum_ir, spectrum_ram, spectrum_ram_enh =\
self.get_spectrum(start, end, npts, width, type, method,
direction, normalize)
# Write out spectrum in file. First column is absolute intensities.
# Second column is absorbance scaled so that data runs from 1 to 0
spectrum2_ir = 1. - spectrum_ir / spectrum_ir.max()
spectrum2_ram = 1. - spectrum_ram / spectrum_ram.max()
if abs(spectrum_ram_enh.max()) > 0.0:
spectrum2_ram_enh = 1. - spectrum_ram_enh / spectrum_ram_enh.max()
else:
spectrum2_ram_enh = np.zeros(spectrum_ram.shape, dtype = np.float64)
outdata = np.empty([len(energies), 7])
outdata.T[0] = energies
outdata.T[1] = spectrum_ir
outdata.T[2] = spectrum2_ir
outdata.T[3] = spectrum_ram
outdata.T[4] = spectrum2_ram
outdata.T[5] = spectrum_ram_enh
outdata.T[6] = spectrum2_ram_enh
fd = open(out, 'w')
fd.write('# %s folded, width=%g cm^-1\n' % (type.title(), width))
iu_ir, iu_string_ir = self.intensity_prefactor(intensity_unit_ir)
iu_ram, iu_string_ram = self.intensity_prefactor(intensity_unit_ram)
# if normalize:
# iu_string = 'cm ' + iu_string_ir + iu_string_ram
fd.write('# [cm^-1] %14s\n' %
('[' + iu_string_ir + iu_string_ram + iu_string_ram + ']'))
for row in outdata:
fd.write('%.3f %15.5e %15.5e %15.5e %15.5e %15.5e %15.5e\n' %
(row[0], iu_ir * row[1], row[2], iu_ram * row[3], row[4],
iu_ram * row[5], row[6]))
fd.close()
|